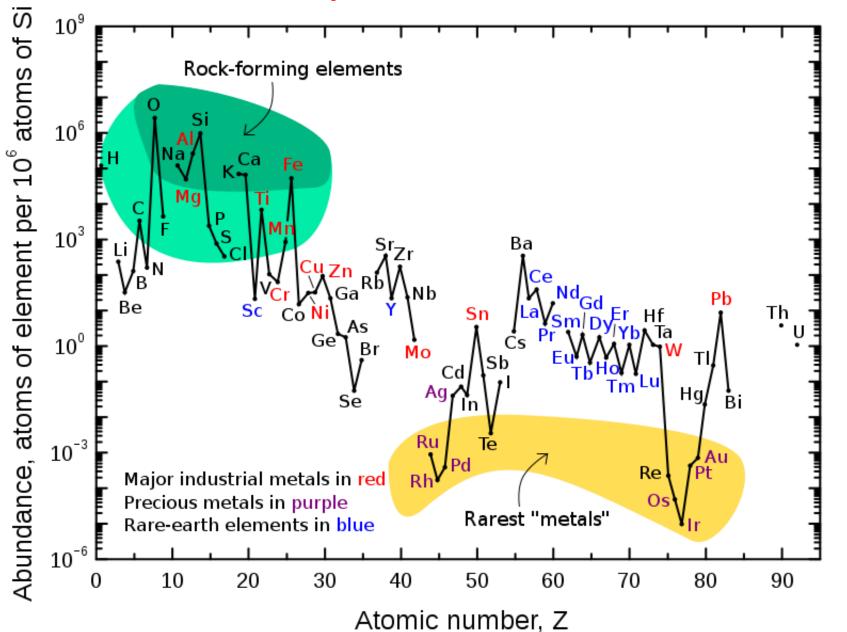
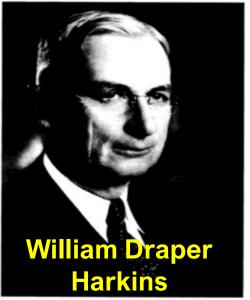

A BRIEF HISTORY OF NUCLEAR ASTROPHYSICS

PART II THE ORIGIN OF THE ELEMENTS

Nikos Prantzos Institut d'Astrophysique de Paris

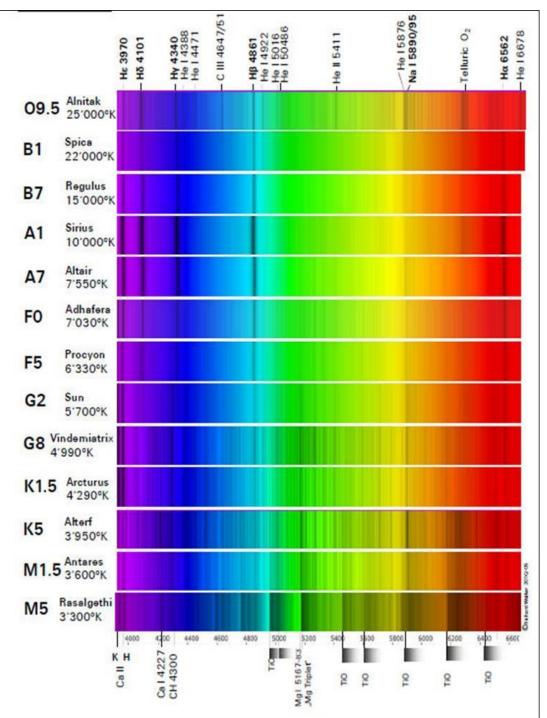

			122 u Ingoran	Mour		of the nts (1) ?= 8 /	$ \begin{array}{c} 869 \\ 4 \\ $	- 54 - 5 2 - 5 2 - 5 5 - 55 - 55 - 55 - 55 -	Ke=90 ?= 1 N6=94 Ja-18 No=94 Ja-18 No=16 80=10 Ri-1184 44-18, Ri=108 16=3 Ri=118. Se=128. Ja-118. Se=128. Ja-183 Je=2. Se=128. Ja-183 Je=2. Se=128. Ja-183 Je=2.
	Reihen	Grappo I. — R'O	Grappo 11. — RO	Gruppo III. R'0'	Gruppe IV. RH4 RO ¹	Groppe V. RH ^a R ¹⁰⁵	Grappo VI. RHª RO'	Gruppo VII. RH R*0'	Gruppo VIII. RO4
Dmitri Ivanovitch	1 2 3 4 5	Na=23	Bo=9,4 Mg=24 Ca=40	Al=27,3 -=44	Si=28 Ti=48	P=31 V=51	8=32 Cr=52	Mn=65	Fo=56, Co=59, Ni=59, Cu=63.
Mendeleïev	6 7 8 9	(Ag≈108)	Cd=112 Ba=187 —	In=113 ?Di=138 —	Sn=118 ?Ce=140 _			-=100 J=127 -	
ill i	10 11 12	(Au=199)		Tl== 204		Bi=208	W=184 − U==240		Os=195, Ir=197, Pt=198, Au=199.


Periodic table of the elements

	Alkali metals			Halogens														
ро	group			Alkaline	e-earth	metals	🗌 No	Noble gases										
period	1*	ř		Transiti	on met	als	📃 Ra	Rare-earth elements (21, 39, 57–71)										
1	1			Other n	and lanthanoid elements (57–71 only) 2													
	Η	2						otinoid	alomon	to			13 5	14	15	16	17	He
2	3	4	Other nonmetals					Actinoid elements						6	7	8	9	10
_	Li	Be		B C N O F Ne														
3	11	12											13	14	15	16	17	18
U	Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	Р	S	CI	Ar
4	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
F	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
0	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
-	87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
	le ethe		vian C	58	59	60	61	62	63	64	65	66	67	68	69	70	71]
	lanthanoid series 6			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
	o oti	anid an	rico 7	90	91	92	93	94	95	96	97	98	99	100	101	102	103	1
	actinoid series 7 Th Pa			U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr			

*Numbering system adopted by the International Union of Pure and Applied Chemistry (IUPAC). © Encyclopædia Britannica, Inc.

Composition of Earth' crust



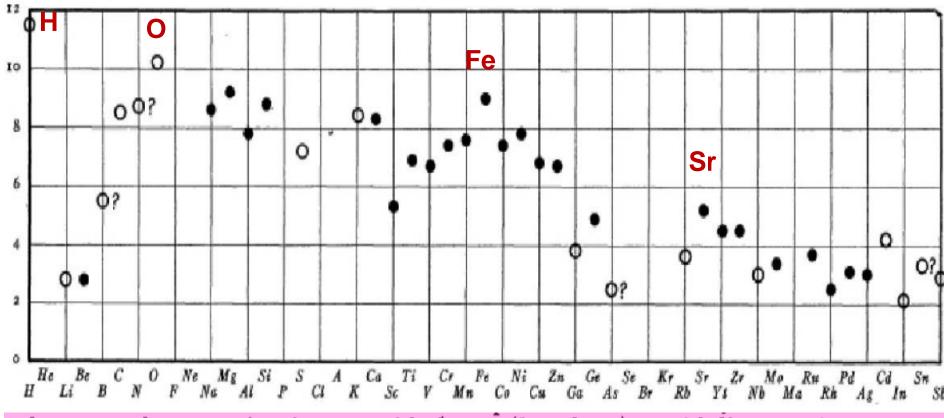
W. S. Harkins

Harkins rule (1915) elements with specific properties are more abundant than other: even vs odd charge

It should be related to the structure of their nuclei, and not to their position in the Periodic Table

Stellar spectroscopy reveals the presence of chemical elements in stellar surfaces.

Determination of abundances requires models of stellar atmospheres


1925: Cecilia Payne H and He are the most abundant elements in stellar atmospheres

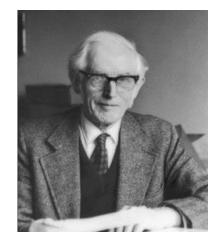
The outstanding discrepancies between the astrophysical and terrestrial abundances are displayed for hydrogen and helium. The enormous abundance derived for these elements in he stellar atmosphere is almost certainly not real. Probably the result may be considered, for hydrogen, as another aspect of its abnormal behavior, already alluded to; and helium, which has some features of astrophysical behavior in common with hydrogen, possibly deviates for similar reasons. [...] The observations on abundances refer merely to the stellar

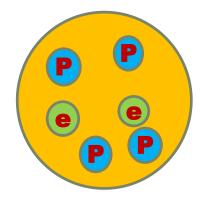
ON THE COMPOSITION OF THE SUN'S ATMOSPHERE

By HENRY NORRIS RUSSELL² (1929)

solar atmosphere contains 60 parts of hydrogen (by volume), 2 of helium, 2 of oxygen, 1 of metallic vapors, and 0.8 of free electrons, practically all of which come from ionization of the metals. This great abundance of hydrogen helps to explain a number of previously puzzling astrophysical facts. The temperature of the reversing layer is finally estimated

Harkins rule (1915) elements with specific properties are more abundant than others:


even vs odd charge


ATOMIC SYNTHESIS AND STELLAR ENERGY. II ROBERT D'ESCOURT ATKINSON (1931)

ABSTRACT

A synthesis theory of stellar energy and of the origin of the elements is developed, in which the various chemical elements are built up step by step from lighter ones in stellar interiors, by the successive incorporation of protons and electrons one at a time. The essential feature is that *helium*, which cannot well be formed in this way, is supposed to be *produced entirely indirectly*, by the spontaneous *disintegration* of unstable nuclei which must first themselves be formed.

Russell has recently shown that the percentage of hydrogen in stars is probably very much greater even at the present time than had generally been supposed; in the sun's atmosphere, for example, sixty out of every sixty-five atoms are hydrogen. Since in addition the hydrogen nucleus is probably much simpler than any other, it seems very reasonable to assume that in its initial state any star, or indeed the entire universe, was composed solely of hydrogen; the

 $4 p^+ + 2 e^- \Rightarrow He-4$

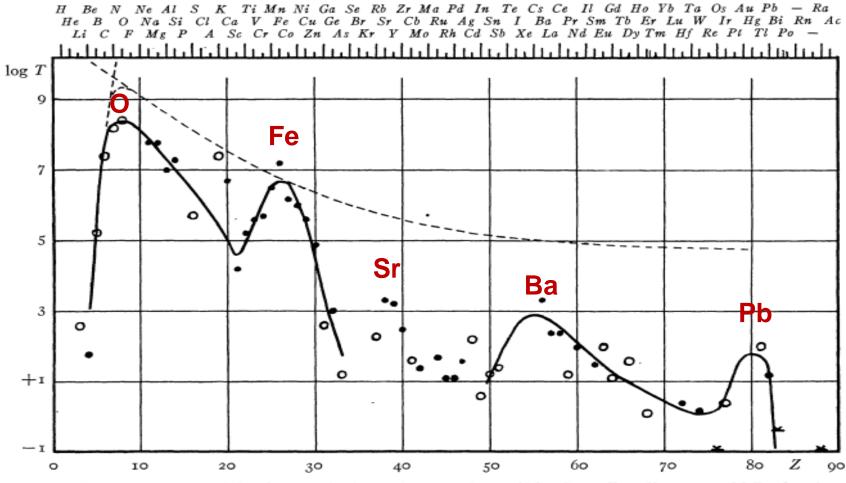


FIG. 2.—Amount of the elements in the sun's atmosphere. (After Russell; ordinates at odd Z values increased by 0.6.) ---- Equilibrium amounts; • First class determinations; \bigcirc Second class determinations.

The relative proportions of the elements in stars of the main sequence follow from the theory, in excellent qualitative agreement with Russell's figures for the sun. The scarcity of the lightest elements, the principal maximum at a fairly early point, a minimum before the iron group, a maximum in it, a scarcity of all elements above it, and minor maxima in the barium and lead regions all follow (Fig. 2) without any special assumptions, from Gamow's theory of nuclear stability, owing to the peculiarities of the Aston mass-defect curve.

On Elementary Transmutations in the Interior of Stars: Paper II (1937)

Are stars making their own elements or is it something else preceding them?

nuclear reactions exert two different influences at the same time: They change the physical state of the matter by releasing energy and its chemical composition by transmuting the elements. The generation of energy is the unproblematic part of the theory to consider: Nuclear reactions or effects of similar energy yield are necessary to explain stellar radiation; and the build-up hypothesis is equivalent to the assumption that the nuclear processes sufficed for that on their own as well. Transmutation of the elements, however, is to a certain extent a side-effect of the nuclear reactions, yet nothing is known about its importance in the history of stellar lifetimes. The empirical frequency distribution of the chemical elements exhibits characteristic regularities apparently quite uniformly valid throughout the entire cosmos, which compel us to attempt to explain it by assuming a uniform formation process. It would suggest itself to look for this process in the element transmutations necessarily connected with the generation of energy in the stars. Yet we cannot exclude at the outset the possibility that the chemical elements were formed by another process prior to the formation of the stars as we know them

Carl Friedrich von Weizsäcker (1912 - 2007)

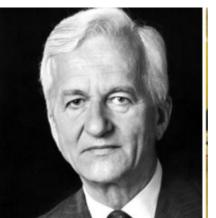
The Weizsäcker family

Ernst Heinrich von W.

diplomat, politician War criminal after Nuremberg II trial

Politician President of German republic (1984-1993)

Richard Karl von W.

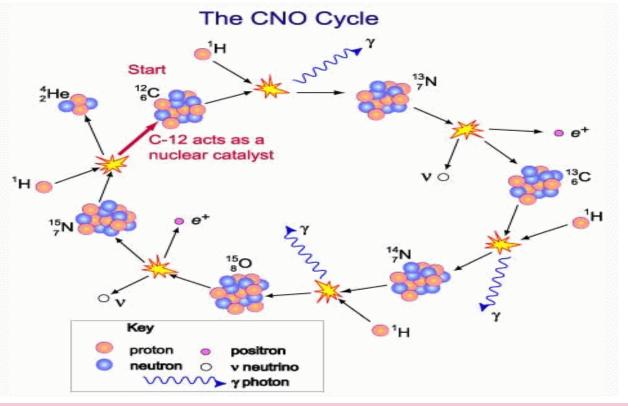

Physicist, Philosopher German research team on nuclear weapons in World War **II**

1945: Operation Alsos and the Farm Hall transcripts (released 1993)

Weizsäcker: "I believe the reason we didn't do it was because all the physicists didn't want to do it, on principle. If we had wanted Germany to win the war we would have succeeded!"

Heisenberg: "Well, that's not quite right. I would say that I was absolutely convinced of the possibility of our making a uranium engine, but I never thought we would make a bomb and I am glad we did not."

Max von Laue called this agreement "*die Lesart*" (the Version) : "*The leader in all these discussions* was Weizsäcker. I did not hear any mention of any ethical point of view."



Energy Production in Stars*

H. A. BETHE Cornell University, Ithaca, New York

It is shown further (§5-6) that no elements heavier than He⁴ can be built up in ordinary stars. This is due to the fact, mentioned above, that all elements up to boron are disintegrated by proton bombardment (α -emission!) rather than built up (by radiative capture). The instability of Be⁸ reduces the formation of heavier elements still further. The production of neutrons in stars is likewise negligible. The heavier elements found in stars must therefore have existed already when the star was formed.

Early studies and ideas about the origin of the elements (up to 1940)

1925: Cecilia Payne Stars are made mostly of Hydrogen

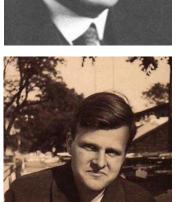
1915: William Harkins Even elements on Earh's crust are more abundant than odd ones due to the structure of their nuclei

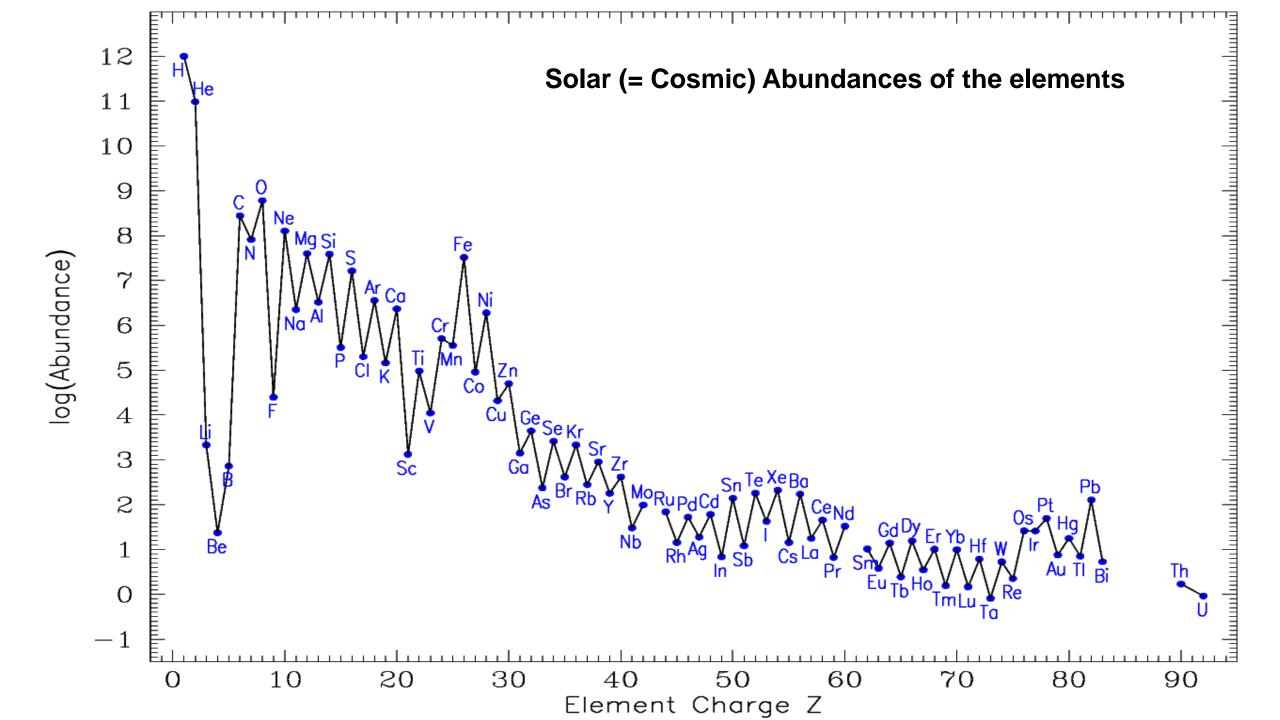
W. S. Harkins

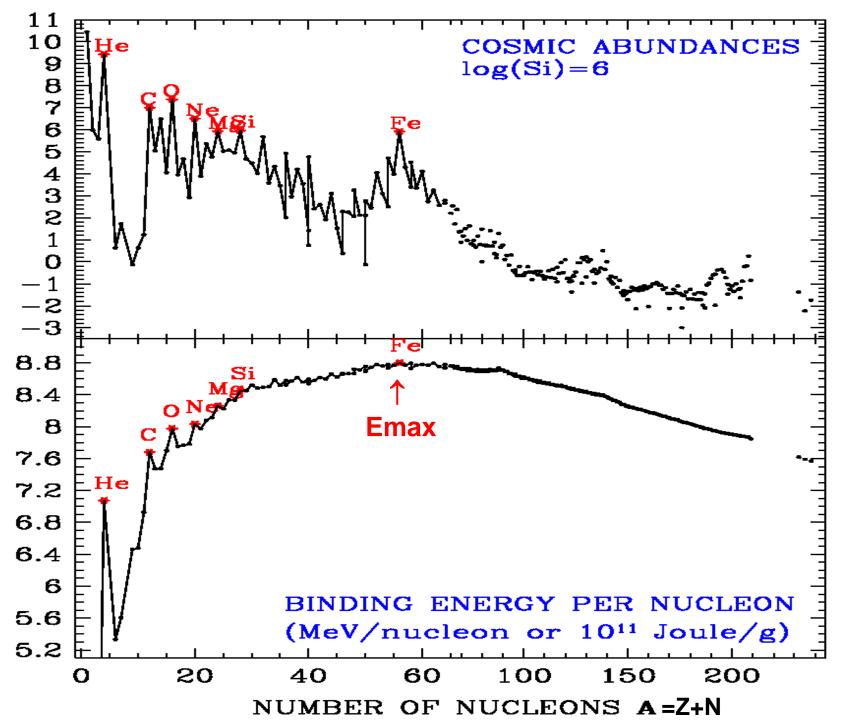
Stellar abundances display specific regularities, similar to those on Earth

1931: Robert Atkinson

Stars build up their elements in their interiors by pre-existing Hydrogen (except for He !)

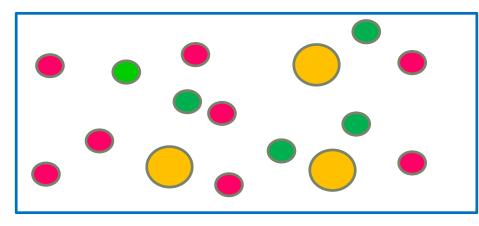



may be; but perhaps the elements were made by another process, prior to their formation



1939: Hans Bethe

Normal stars cannot built in their interiors elements heavier than Helium.


Cosmic abundances of nuclides are locally correlated with **nuclear stability** (*Binding energy per nucleon*):

alpha-nuclei (A=multiple of 4), "magic" nuclei, Fe peak nuclei or nuclei with even A or Z are more abundant than their neighbors

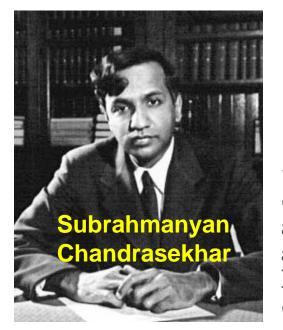
Nuclear processes have shaped the cosmic abundances of the chemical elements

WHERE? HOW?

Nuclear Reactions

System of interacting nuclei at temperature T and density p evolving for lapse of time L

> Nuclear reactions $A + B \Rightarrow C + D$ proceeding at rate R

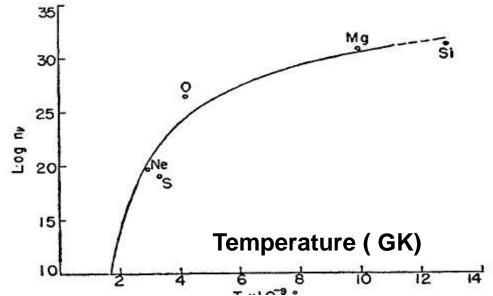

1. R >> 1/L : All direct and inverse reactions proceed very fast : $A + B \Leftrightarrow C + D$ Nuclear statistical equilibrium $X_i(A_i, Z_i, T, \rho) = \frac{A}{N_A \rho} \omega(T) \left(\frac{2\pi k T M(A_i, Z_i)}{h^2}\right)^{3/2} \exp\left[\frac{\mu(A_i, Z_i) + B(A_i, Z_i)}{kT}\right]$

Abundances of nuclei depend on T, p and their binding energies B

2. R =< 1/L : Reactions proceed slowly : $A + B \Rightarrow C + D$

Abundances of nuclei depend on reaction rates R(T, ρ) and are coupled to the abundances of all other nuclei of the system **Time-dependent treatment required**

AN ATTEMPT TO INTERPRET THE RELATIVE ABUNDANCES OF THE ELEMENTS AND THEIR ISOTOPES


S. CHANDRASEKHAR AND LOUIS R. HENRICH 1942

1. Introduction.—It is now generally agreed that the chemical elements cannot be synthesized under conditions now believed to exist in stellar interiors. Consequently, the question of the origin of the elements is left open. On the other hand, the striking regularities which the relative abundances of the elements and their isotopes reveal (e.g., Harkins' rule) require some explanation. It has therefore been suggested that the te elements were formed at an earlier, *prestellar*, stage of the universe

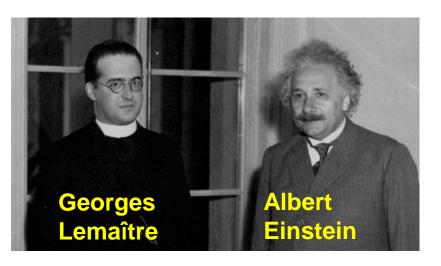
discussion of this problem by von Weizsäcker¹ has indicated that we should distinguish at least two distinct epochs in the prestellar state: an initial epoch of extreme density and temperature, when the heaviest elements, like gold and lead, were formed; and a later epoch of relatively "moderate" conditions, during which the present relative abundances of the lighter elements beyond oxygen (to at least sulphur, as we shall see in

Starting at temperature T~10 GK (10 10⁹ K) and density ρ ~10⁸ g/cc built nuclei around Si *In conditions of nuclear equilibrium* $A + B \Leftrightarrow C + D$ then at lower T and ρ built lighter nuclei

But Fe and heavier nuclei NEVER produced

THE SYNTHESIS OF THE ELEMENTS FROM HYDROGEN

F. Hoyle


(Received 1946 April 6 †)

Summary

Stars that have exhausted their supply of hydrogen in regions where thermonuclear reactions are important enter a collapsing phase. If the mass of the star exceeds Chandrasekhar's limit collapse will continue until rotational instability occurs. Rotational instability enables the star to throw material off to infinity. This process continues until the mass of the remaining stellar nucleus becomes of the order of, or less than Chandrasekhar's limit. The nucleus can then attain a white dwarf equilibrium state.

The temperature generated at the centre of a collapsing star is considered and it is shown that values sufficiently high for statistical equilibrium to exist between the elements must occur. The relative abundances of the elements can then be worked out from the equations of statistical mechanics. These equations are considered in detail and it is shown that **a** roughly uniform abundance of the elements over the whole of the periodic table can be obtained. The process of rotational instability enables the heavy elements built up in collapsing stars to be distributed in interstellar space.

But HOW to get the material out of the star ?

Lemaître 1927 : Recession of galaxies explained as due to expansion of the Universe

Einstein to Lemaître: Your calculations are correct, but your physics is atrocious"

> 1931: Explosion of the Primeval Atom

Expanding Universe and the Origin of Elements

G. GAMOW The George Washington University, Washington, D. C. September 13, 1946

I T is generally agreed at present that the relative abundances of various chemical elements were determined by physical conditions existing in the universe during the early stages of its expansion, when the temperature and density were sufficiently high to secure appreciable reaction-rates for the light as well as for the heavy nuclei.

Returning to our problem of the formation of elements, we see that the conditions necessary for rapid nuclear reactions were existing only for a very short time, so that it may be quite dangerous to speak about an equilibriumstate which must have been established during this period. It is also interesting to notice that the calculated timeperiod during which rapid nuclear transformations could have taken place is considerably shorter than the β -decay period of free neutrons which is presumably of the order of magnitude of one hour. Thus if free neutrons were present in large quantities in the beginning of the expan-

NOT nuclear equilibrium

time-dependent treatment of nuclear reactions is necessary

little time available (less than the time for neutron decay ~1 h)

The Origin of Chemical Elements

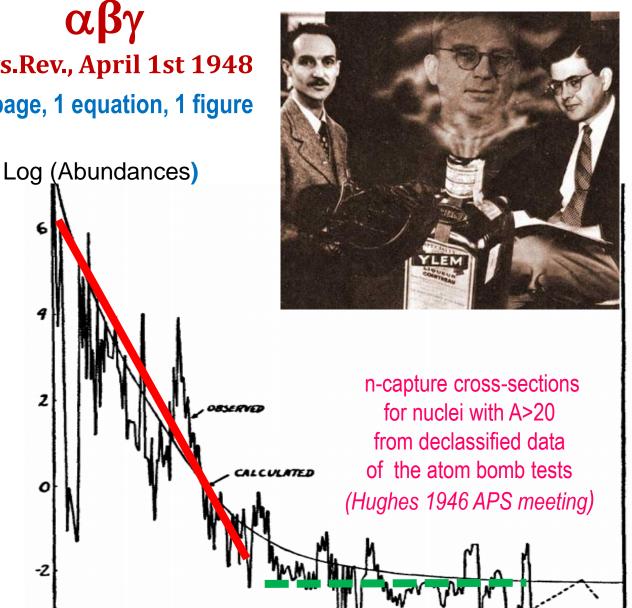
50

100

R. A. ALPHER* Phys.Rev., April 1st 1948 Applied Physics Laboratory, The Johns Hopkins University, Silver Spring, Maryland 1 page, 1 equation, 1 figure

AND

H. BETHE Cornell University, Ithaca, New York

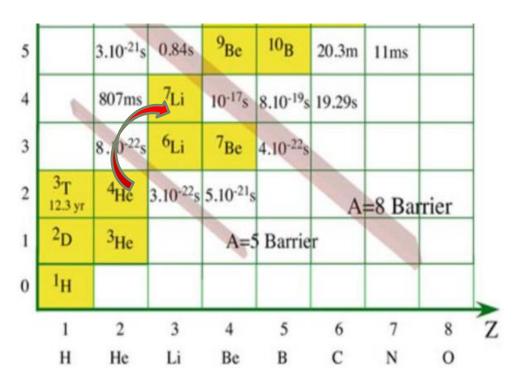

AND

G. GAMOW The George Washington University, Washington, D. C. February 18, 1948

Thus the observed slope of the abundance curve must not be related to the temperature of the original neutron gas, but rather to the time period permitted by the expansion process. Also, the individual abundances of various nuclear species must depend set so much on their intrinsic stabilities (mass defects) as on the values of their neutron capture cross sections. The equations governing such a building-up process apparently can be written in the form:

$$\frac{dn_i}{dt} = f(t)(\sigma_{i-1}n_{i-1} - \sigma_i n_i) \quad i = 1, 2, \cdots 238,$$
(1)

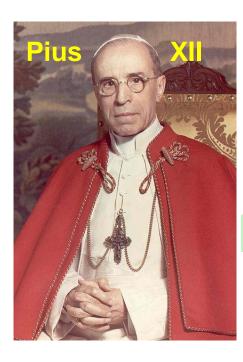
where n_i and σ_i are the relative numbers and capture cross sections for the nuclei of atomic weight i, and where f(t) is a factor characterizing the decrease of the density with time.


150

Mass number A = Protons + Neutrons

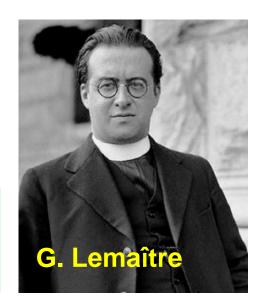
200

250


The Washington Post, 16 April 1948 : "World Began in 5 Minutes, New Theory" At the very beginning of everything, the universe had infinite density concentrated in a single zero point. Then just 300 seconds – five minutes – after the start of everything, there was a rapid expansion and cooling of the primordial matter. The neutrons – those are the particles that trigger the atomic bomb – started decaying into protons and building up the heavier chemical elements. ... This act of creation of the chemical elements took the surprisingly short time of an hour. (The Bible story said something about six days for the act of creation)

Fermi and Turkevich (1949, unpublished) No elements beyond He, (Li) because of A=5 (8) gap Hayashi (1950): At T~10¹⁰ K : n \Leftrightarrow p equilibrium

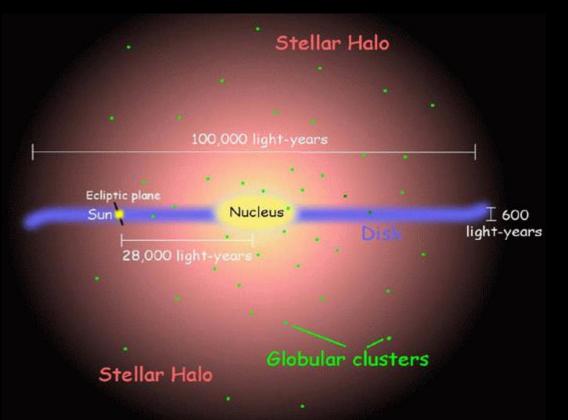
After the discovery of 3 K microwave background (*Penzias and Wilson 1965*):


Peebles (1966), Wagoner, Fowler and Hoyle (1967) First calculations of « realistic » Big Bang nucleosynthesis

Address to the Pontifical Academy of Sciences (September 1951) THE PROOFS FOR THE EXISTENCE OF GOD IN THE LIGHT OF MODERN NATURAL SCIENCE Present-day science, with one sweeping step back across millions of centuries, has succeeded in bearing witness to that primordial "Fiat lux" uttered at the moment when, along with matter, there burst forth from nothing a sea of light and radiation, while the particles of chemical elements split and formed into millions of galaxies...

Hence, creation took place in time. Therefore, there is a Creator. Therefore, God exists! Although it is neither explicit nor complete, this is the reply we were awaiting from science, and which the present human generation is awaiting from it.

We may speak of this event as of a beginning. I do not say a creation. Physically it is a beginning in the sense that if something happened before, it has no observable influence on the behavior of our universe, as any feature of matter before this beginning has been completely lost by the extreme contraction at the theoretical zero. The question if it was really a beginning or rather a creation, something started from nothing, is a philosophical question which cannot be settled by physical or astronomical considerations



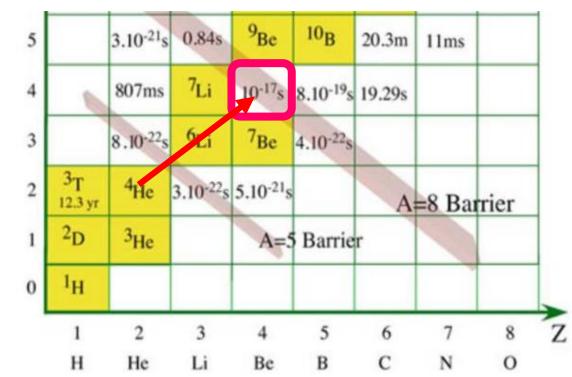
G. Gamow: all elements were produced in the hot primordial Universe (Big Bang) by successive neutron captures

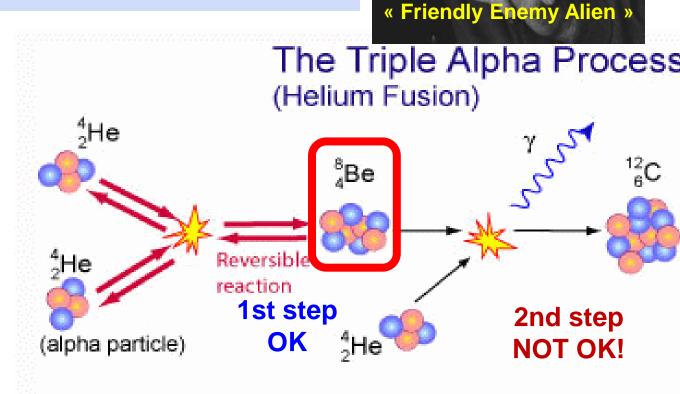
Early 1950ies

F. Hoyle: all elements produced Inside stars during their collapsing stage, by thermonuclear reactions

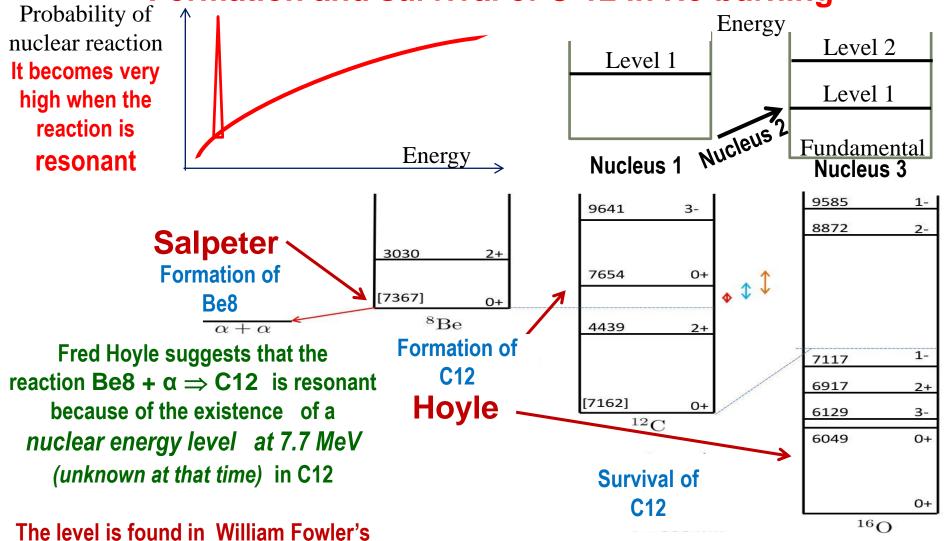
Old stars of galactic halo (Population II) contain less heavy elements (metals) than the younger stellar population (Population I) of the galactic disk *Chamberlain and Aller 1951*

The chemical composition of the Milky Way was substantially different in the past


NUCLEAR REACTIONS IN STARS WITHOUT HYDROGEN*


E. E. SALPETER

LABORATORY OF NUCLEAR STUDIES


CORNELL UNIVERSITY October 2, 1951

verted into helium by means of the carbon-nitrogen cycle. When the energy supply of the carbon-nitrogen cycle has been exhausted, the star undergoes gravitational contraction, and its temperature increases. Various nuclear processes^{1, 2, 3} have been suggested for such a contracting star, all of which require temperatures of well over $10^{9^{\circ}}$ K. The main aim of this note is to point out that there is one nuclear process which takes place at a much lower temperature of about $2 \times 10^{8^{\circ}}$ K, namely, the conversion of three helium nuclei into one carbon nucleus.

Formation and survival of C-12 in He-burning

First quantitative prediction of a microscopic property of matter (structure of C12 nucleus) from a macroscopic one (abundances of C12 and O16) 1st and only « prediction » of the Anthropic Principle ?

Kellog laboratory in 1953

Formation of Carbon (C-12)

PHYSICAL REVIEW

VOLUME 92, NUMBER 3

NOVEMBER 1, 1953

The 7.68-Mev State in C^{12}

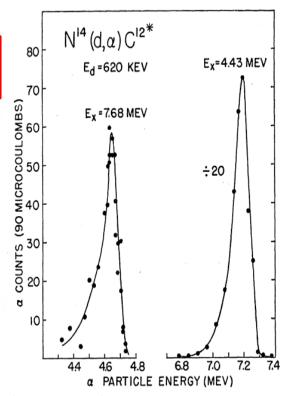
D. N. F. DUNBAR,* R. E. PIXLEY, W. A. WENZEL, AND W. WHALING Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California (Received July 21, 1953)

Magnetic analysis of the alpha-particle spectrum from N¹⁴ (d,α) C¹² covering the excitation energy range from 4.4 to 9.2 Mev in C¹² shows a level at 7.68±0.03 Mev. At $E_d = 620$ kev, $\theta_{1ab} = 90^{\circ}$, transitions to this state are only 6 percent of those to the level at 4.43 Mev.

SALPETER¹ and $\ddot{O}pic^2$ have pointed out the importance of the Be⁸(α, γ)C¹² reaction in hot stars which have largely exhausted their central hydrogen. Hoyle³ explains the original formation of elements heavier than helium by this process and concludes from the observed cosmic abundance ratios of O¹⁶: C¹²: He⁴

* On leave from the University of Melbourne, Melbourne, Australia.

¹E. E. Salpeter, Annual Review of Nuclear Science (Annual Reviews, Inc., Stanford, 1953), Vol. 2, p. 41.


² E. J. Opic, Proc. Roy. Irish Acad. A54, 49 (1952).

³ F. Hoyle (private communication).

that this reaction should have a resonance at 0.31 MeV or at 7.68 MeV in C¹².

An early measurement of the range of the alpha particles from $N^{14}(d,\alpha)C^{12}$ indicated a level in C^{12} at 7.62 Mev.⁴ However, a recent magnetic analysis of this reaction failed to detect a transition to any level in this region of excitation,⁵ nor did the level show up in the neutron spectrum⁶ from $B^{11}(d,n)C^{12}$. From the

⁴ M. G. Holloway and B. L. Moore, Phys. Rev. 58, 847 (1940). ⁵ R. Malm and W. W. Buechner, Phys. Rev. 81, 519 (1951). ⁶ W. M. Gibson, Proc. Phys. Soc. (London) A62, 586 (1949); V. R. Johnson, Phys. Rev. 86, 302 (1952).

ON NUCLEAR REACTIONS OCCURRING IN VERY HOT STARS. I. THE SYNTHESIS OF ELEMENTS FROM CARBON TO NICKEL

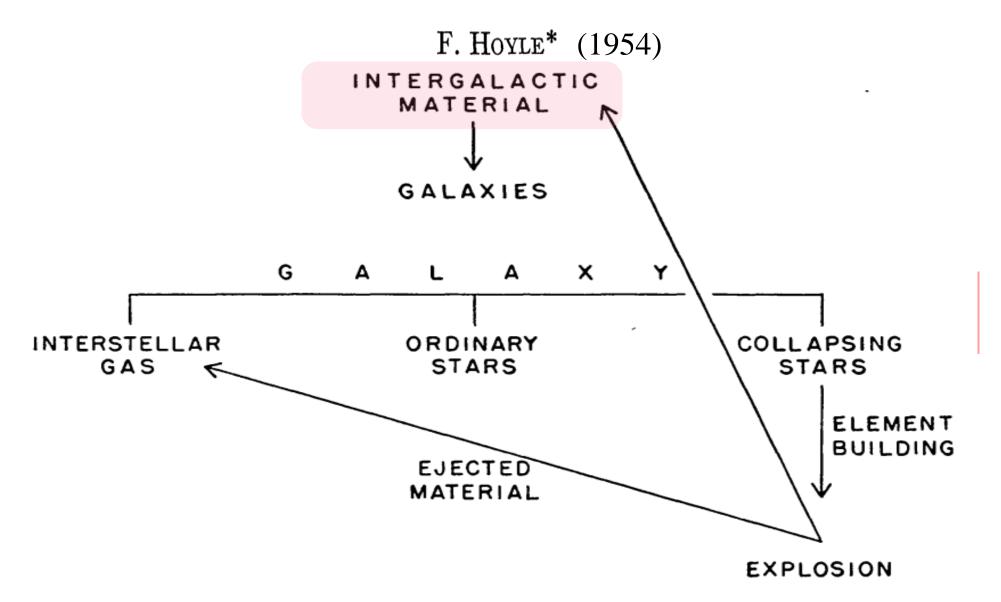
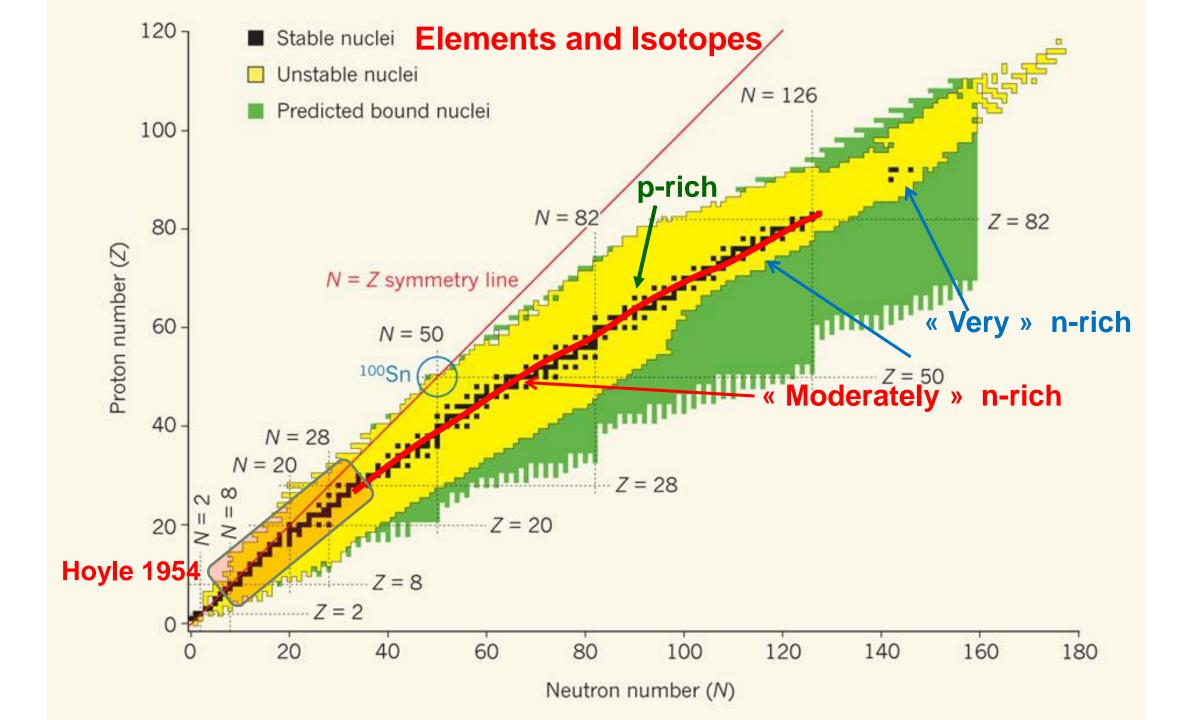
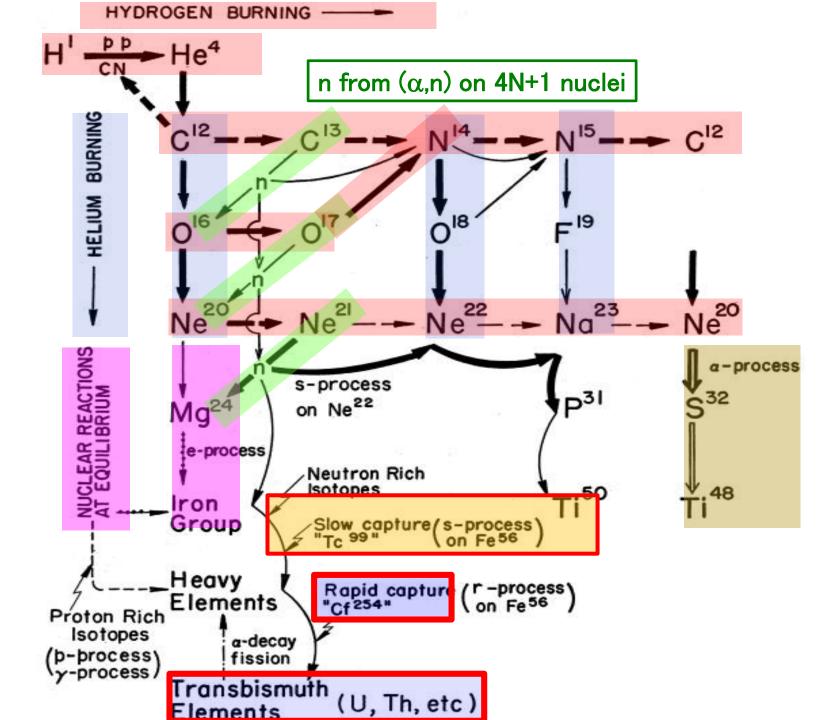



FIG. 1.—The general cosmological framework assumed for this discussion

Reviews of Modern Physics 1957 Synthesis of the Elements in Stars*


E. MARGARET BURBIDGE, G. R. BURBIDGE, WILLIAM A. FOWLER, AND F. HOYLE


Kellogg Radiation Laboratory, California Institute of Technology, and Mount Wilson and Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena, California

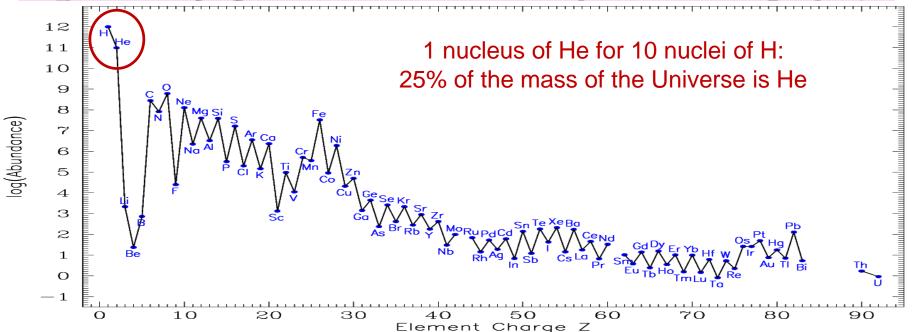
> "It is the stars, The stars above us, govern our conditions"; (King Lear, Act IV, Scene 3)

> > but perhaps

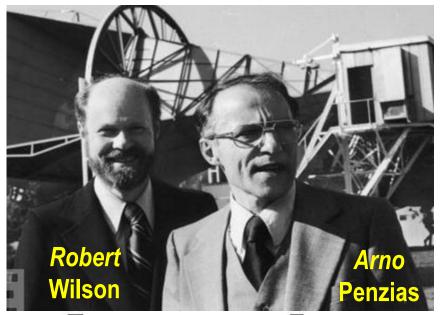
"The fault, dear Brutus, is not in our stars, But in ourselves," (Julius Caesar, Act I, Scene 2)

Data on neutron capture cross-sections and yields from the first H-bomb test in Bikini island (1952)

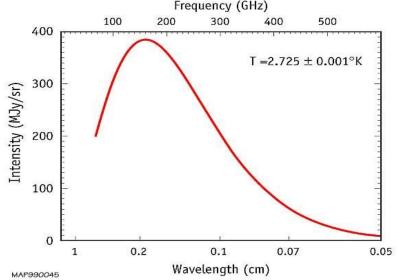
	Elements	Method of Formation						
1957 : Alastair G. W. Cameron	D, Li, Be, B	Not formed in stellar interiors. Possibly made by nuclear reactions in stellar atmospheres						
	He, C, N, O, F, Ne	Hydrogen and helium thermonuclear reactions in orderly evolution of stellar interiors						
Nuclear reactions in stars and nucleogenesis (Chalk River report)	Ne to Ca	 Heavy-ion thermonuclear reactions in orderly evolution of stellar interiors Neutron capture on slow time scale Hydrogen and helium thermonuclear reactions 						
	Fe peak	in supernova explosions Statistical equilibrium in pre-supernovae and in supernovae						
	Heavy elements :							
	(a) Unshielded	Neutron capture on fast time scale in Type I super- novae						
	(b) Shielded	Neutron capture on slow time scale in orderly evolu- tion of stellar interiors						
	(c) Excluded	 Proton capture and photonuclear reactions in Type II supernovae Photonuclear reactions on slow time scale in orderly evolution of stellar interiors 						
and a start	(d) Trans-bismuth	Neutron capture on fast time scale in Type I super- novae						


NATURE

THE MYSTERY OF THE COSMIC HELIUM ABUNDANCE


By PROF. F. HOYLE, F.R.S., and DR. R. J. TAYLER

University of Cambridge


This brings us back to our opening remarks. There has always been difficulty in explaining the high helium content of cosmic material in terms of ordinary stellar processes. The mean luminosities of galaxies come out appreciably too high on such a hypothesis. The arguments presented here make it clear, we believe, that the helium was produced in a far more dramatic way. Either the Universe has had at least one high-temperature, high-density phase, or massive objects must play (or

1965 : discovery of the Cosmic Microwave Background

SPECTRUM OF THE COSMIC MICROWAVE BACKGROUND

*This lecture was delivered December 8, 1978, on the occasion of the presentation of the 1978 Nobel Prizes in Physics.

The origin of the elements*

Arno A. Penzias

Communications Sciences Division, Bell Laboratories, 4E-605,

Throughout most of recorded history, matter was thought to be composed of various combinations of four basic elements; earth, air, fire, and water. Modern science has replaced this list with a considerably longer one; the known chemical elements now number well over one hundred. Most of these, the oxygen we breathe, the iron in our blood, the uranium in our reactors, were formed during the fiery lifetimes and explosive deaths of stars in the heavens around us. A few of the elements were formed before the stars even existed, during the birth of the universe itself.

ON THE SYNTHESIS OF ELEMENTS AT VERY HIGH TEMPERATURES*

ROBERT V. WAGONER, WILLIAM A. FOWLER, AND F. HOYLE California Institute of Technology, Pasadena, California, and Cambridge University Received September 1, 1966

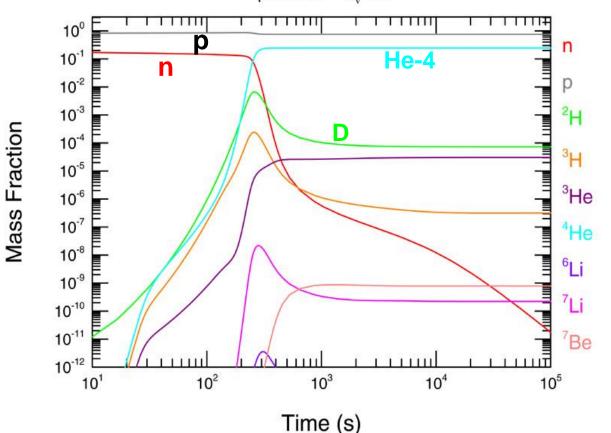
ABSTRACT

A detailed calculation of element production in the early stages of a homogeneous and isotropic expanding universe as well as within imploding-exploding supermassive stars has been made. If the recently measured microwave background radiation is due to primeval photons, then significant quantities of only D, He³, He⁴, and Li⁷ can be produced in the universal fireball. Reasonable agreement with solar-

system abundances for these nuclei is obtained density is $\sim 2 \times 10^{-31}$ gm cm³, corresponding

Hayashi (1950). n - p equilibrium

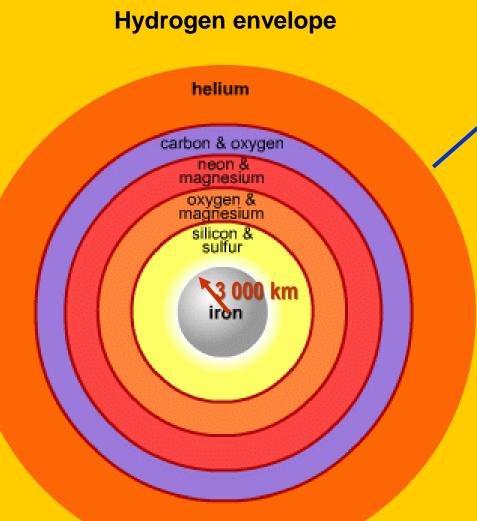
 $X(n)/X(p) \sim 0.13$ at freeze-out X(He-4) ~ 2 X(n) ~ 0.25


-Only way to produce so much He4

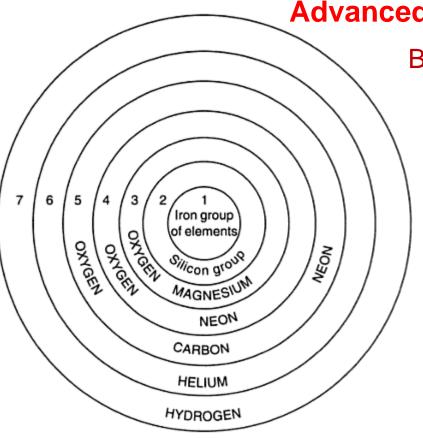
(25 % by mass)

-Only way to produce Deuterium

(destroyed in stellar interiors)


In excellent agreement with observations

η=4.0e-10 N_=3.0

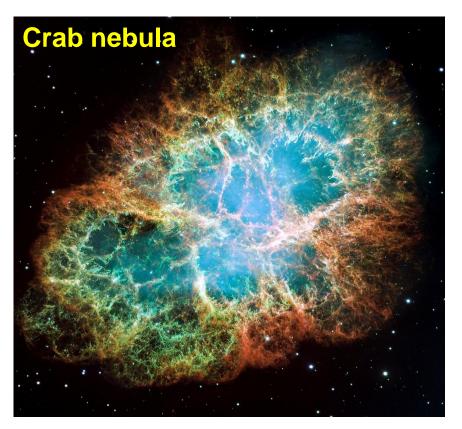

Back to the stars

Massive stars "burn" heavier and heavier nuclei, until they turn their cores into iron Fe-56

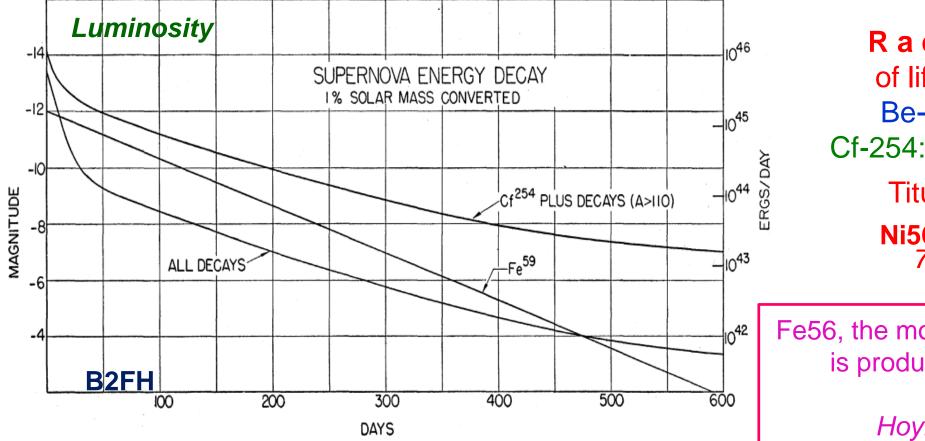
Radius: 700 000 000 km =1000 R_☉

Fe-56 is the most stable nucleus in nature (its reactions are endothermic). No nuclear energy source available in the core

Advanced nucleosynthesis phases in massive stars


Because of the increased sensitivity of nuclear reactions to temperature heavier nuclei are produced closer to the centre of the star

The « onion skin » model (Hoyle 1955)

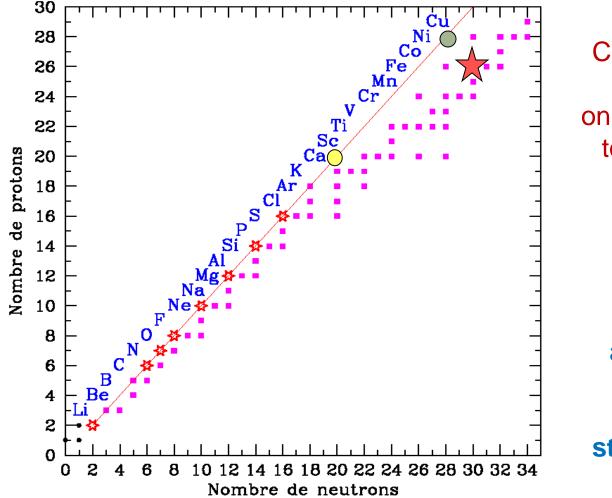

The outer layers keep (partially) the products of previous phases of stellar nucleosynthesis

This material, synthesized by nuclear reactions in stellar interiors must come out through the final event of a supernova explosion

> The explosion produces also new elements (*explosive nucleosynthesis*) including short-lived **radioactive o**nes

What powers the exponentially decreasing lightcurves of supernovae?

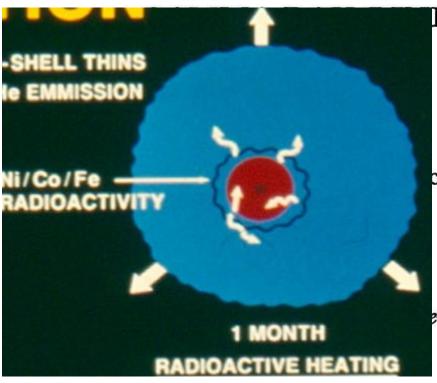
R a d i o a c t i v i t y, of lifetime ~2 months Be-7 : Borst 1950 Cf-254: Baade, B2FH 1956 Titus Pankey Jr 1963 Ni56 \rightarrow Co56 \rightarrow Fe56 7 days 2 months


Fe56, the most stable nucleus in nature is produced as unstable Ni56

Hoyle's greatest regret

Hoyle and Fowler 1960: *Explosive nucleosynthesis*

sions. The input of radioactive energy into the exploding debris of supernovae cannot be neglected. Furthermore, the production of Cf^{254} within an interval of a few microseconds in the first hydrogen bomb test in 1952 must be taken as observational evidence for the *rapid process* of neutron capture, by which fissionable material is produced in supernova explosions. The heaviest nucleus in the bomb components was U^{238} . At least 16 neutrons were added in the short interval of the bomb explosion. It is not unreasonable to extrapolate by a factor of 10 or more in going to stellar explosions, where the iron-group elements serve as seed nuclei but the neutron fluxes are considerably enhanced.


The way towards the Fe-peak: hydrostatic vs explosive

Ca40 is the last stable nucleus with N=Z on the way of Si-melting towards the Fe-peak In the stellar core weak interactions $(p + e^{+})$ turn some protons into neutrons and Fe56 dominates the composition in nuclear statistical equilibrium

In explosive nucleosynthesis, weak (=slow) interactions have no time to operate and the nuclear flow goes through N = Z up to Ni56 (N=Z=28)

Hoyle's greatest regret : missing the origin of Fe56, the most stable nucleus in nature It is produced as unstable Ni56 in supernova explosions

ES FROM YOUNG SUPERN GAMMA RAYS

ESCAPE

C, N, O, SL

Co/F

6 MO - 2 YEARS

ENVELOPE THINS

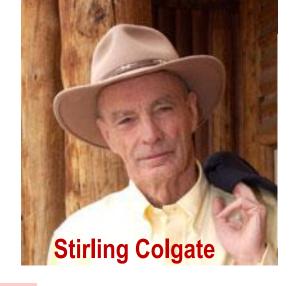
DONALD D. CLAYTON* Rice University, Houston, Texas

STIRLING A. COLGATE co Institute of Mining and Technolog UV, OPT

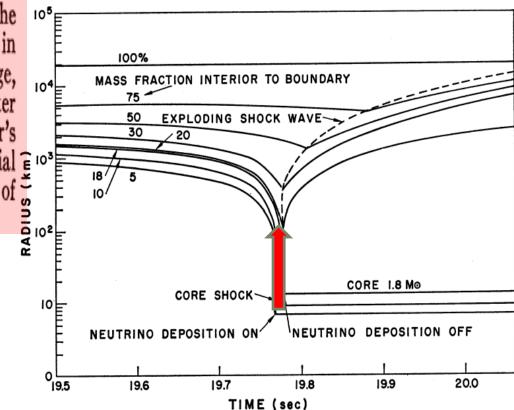
AND

GERALD J. FISHMAN Rice University, Houston, Texas eived May 20, 1968; revised June 24, 1

ABSTRACT

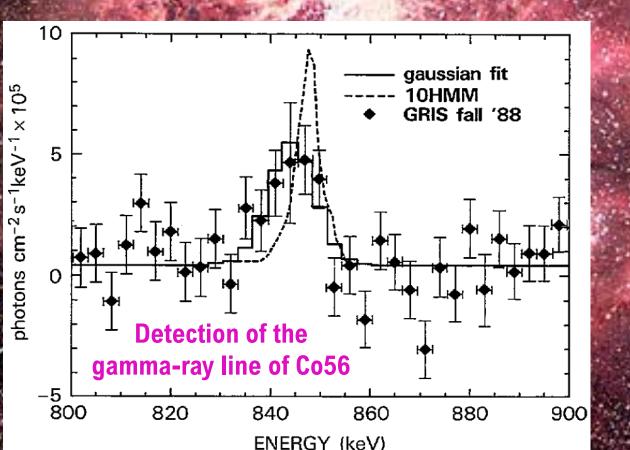

The gamma-ray luminosity of a typical type I supernova remnant has been calculated by assuming that the origin of the optical luminosity is due to the energy of the radioactive decay of Ni⁵⁶. It is expected that Ni⁵⁶ is the most abundant nucleus resulting from silicon burning in the supernova shock conditions. The requisite mass of Ni⁵⁶ (0.14 M_{\odot}) gives rise to gamma-ray lines with energies near 1 MeV that should be detectable in young supernova remnants at distances up to a few Mpc. Future detectors aboard satellites should be able to detect events at the rate of about two observable events per year. A few supernova remnants in the Galaxy should be observable at all times in lines following the decay of Ti⁴⁴.

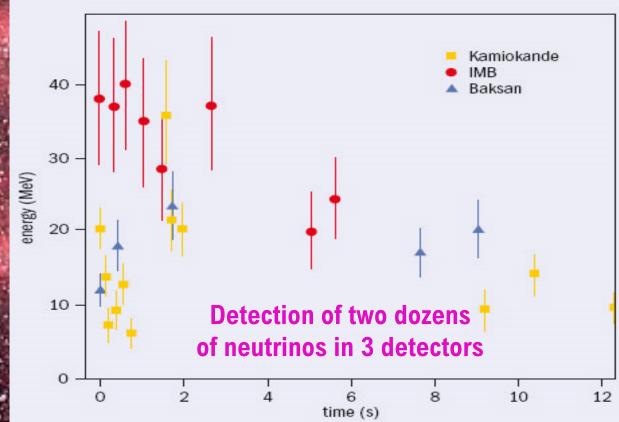
Thus, the observation of gamma-ray line emission from a young supernova seems very promising in the near future. This observation, or even a null observation at a low threshold, will have great significance in the fields of nuclear astrophysics and supernova theory. The scientific importance of a positive measurement would be analogous with and comparable to the importance of the successful detection of neutrinos from the Sun.

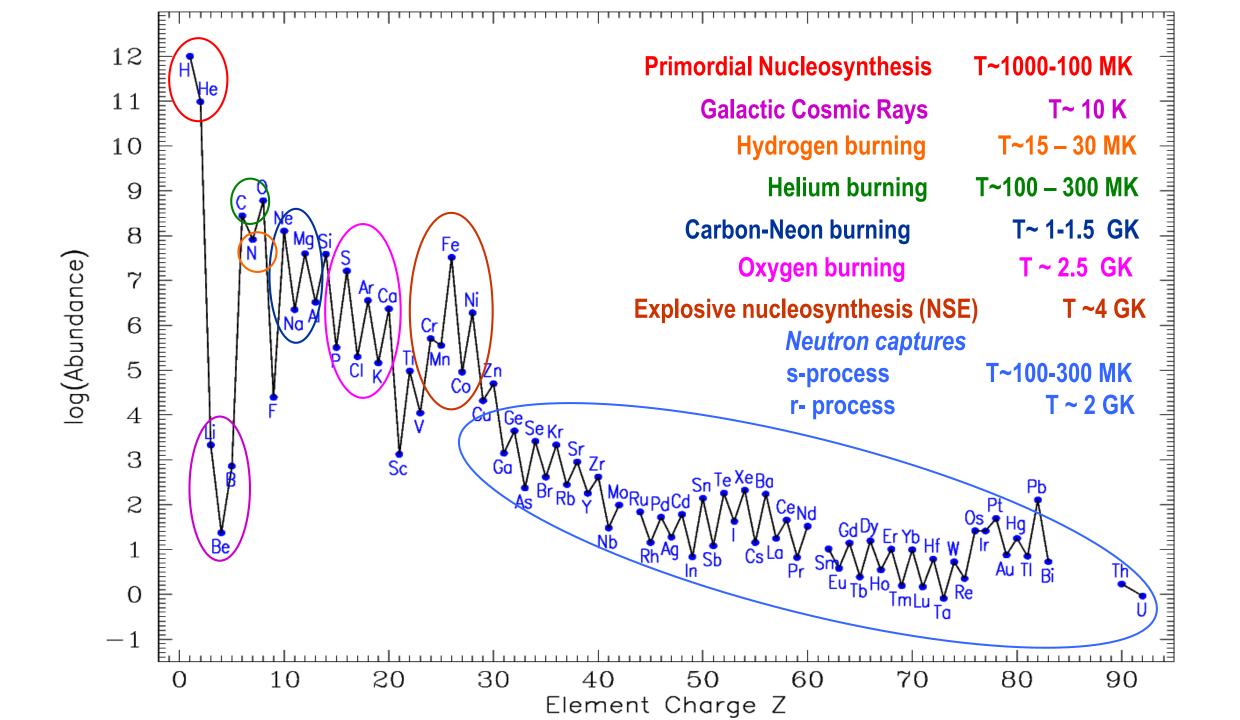

THE HYDRODYNAMIC BEHAVIOR OF SUPERNOVAE EXPLOSIONS*

STIRLING A. COLGATE AND RICHARD H. WHITE Lawrence Radiation Laboratory, University of California, Livermore, California Received June 29, 1965

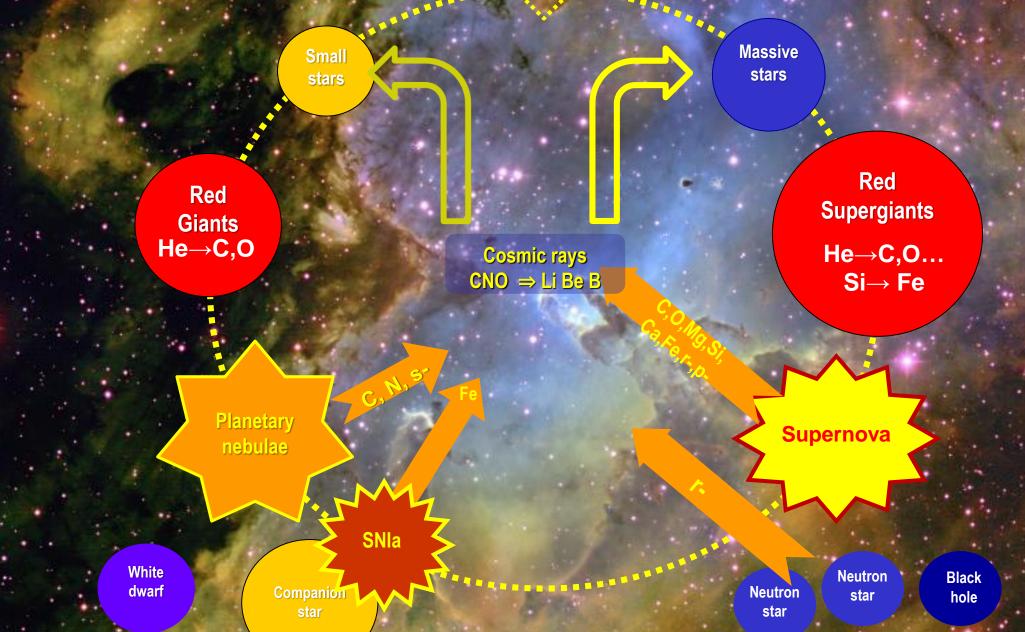
ABSTRACT


1959: Suggests satellites for search of γ-rays from supernovae, In fact to cover monitoring of soviet test explosions




We regard the release of gravitational energy attending a dynamic change in configuration to be the primary energy source in supernovae explosions. Although we were initially inspired by and agree in detail with the mechanism for initiating gravitational instability proposed by Burbidge, Burbidge, Fowler, and Hoyle, we find that the dynamical implosion is so violent that an energy many times greater than the available thermonuclear energy is released from the star's core and transferred to the star's mantle in a supernova explosion. The energy released corresponds to the change in gravitational potential of the unstable imploding core; the transfer of energy takes place by the emission and deposition of neutrinos.

99% of the enormous amount of gravitational energy from the dynamical collapse of the Fe core is released in the form of neutrinos;
Some of them interact with the stellar mantle and expel it, making a supernova


SN 1987.A in the Large Magellanic Cloud 150 000 light years from Earth

