Precision mass measurements for nuclear and neutrino physics studies

Basics of Penning-trap mass spectrometry

Motivation and fields of applications

Recent results and future perspectives

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK

Heidelberg, April 26th, 2021

Klaus Blaum

Max-Planck-Institute for Nuclear Physics, Heidelberg

Atomic/nuclear spectroscopy ...

... probes fundamental physics!

Safronova et al. Rev. Mod. Phys. 90, 025008 (2018)

Exotic systems as sensitive probes

Blaum, Dilling, Nörtershäuser, Phys. Scr. **T152**, 014017 (2013) Kozlov, Safronova, Crespo, Schmidt, Rev. Mod. Phys **90**, 045005 (2018)

The mass of an atom/nucleus

$$m_{\text{Atom}} = N \bullet m_{\text{neutron}} + Z \bullet m_{\text{proton}} + Z \bullet m_{\text{electron}} - (B_{\text{atom}} + B_{\text{nucleus}})/c^2$$
$$\delta m/m < 10^{-10} \qquad \qquad \delta m/m = 10^{-6} - 10^{-8}$$

Storage and cooling of ions

Energy and precision regimes

Storage of ions in a Penning trap

The free cyclotron frequency is inverse proportional to the mass of the ion!

 $v_{\rm c} = qB / (2\pi m_{\rm ion})$

Non-destructive FT-ICR detection technique

$$v_{\rm c} = \sqrt{v_{+}^2 + v_{z}^2 + v_{-}^2}$$

L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986).

Non-destructive detection technique

BASE - A Penning-trap setup at CERN

A balance for protons and antiprotons.

Results I

The masses of the building bocks of (anti-)matter

BASE and LIONTRAP: CERN, MPIK, RIKEN, Uni Mainz

The atomic mass of the proton

F. Heiße et al., Phys. Rev. Lett. 119, 033001 (2017)

Comparison of the proton and antiproton

Compare charge-to-mass ratios R of p and \overline{p} :

 $(q/m)_{\overline{p}}/(q/m)_{p} = -1.000\ 000\ 000\ 001\ (69)$

S. Ulmer *et al*., Nature 524, 196 (2015)

It is not that easy!

$$m_{\mathrm{H}^{-}} = m_p \left(1 + 2 \frac{m_e}{m_p} + \frac{\alpha_{\mathrm{pol},\mathrm{H}^{-}} B_0^2}{m_p} - \frac{E_{\mathrm{b}}}{m_p} - \frac{E_{\mathrm{a}}}{m_p} \right)$$

The building blocks of matter

Results II

Nuclear masses for neutrino physics

ECHo, LIONTRAP, PENTATRAP: MPIK, Uni Heidelberg, Uni Mainz

The puzzle of light atomic masses

The puzzle of light atomic masses

An easy image of our precision regime

 $m_{bee} \approx 60 \text{ mg}$

 $\frac{m_{bee}}{m_{Eiffel}} \approx 8 \cdot 10^{-12}$

 m_{Eiffel} = 7300 T = 7.300.000.000 mg = 7.3·10¹² mg

The ECHo (163Ho) project

Measurement principle at PENTATRAP

Mass Ratio determination – Polynomial Method

Atomic physics isn't that easy

Highly charged Re and Os ions

Results

For Re²⁹⁺ (Z = 75) vs. Os²⁹⁺ (Z = 76) we measure two ratios with a 50/50 probability:

 $R_1 = 1.00000013886(15)$ $R_2 = 1.00000015024(12)$

- Os²⁹⁺ vs. Os²⁹⁺ measurements yield always unity.
- Re^{29+} vs. Re^{29+} measurements yield either unity or $1+1.14\cdot 10^{-9}$.

Conclusions:

(1) Ions in the EBIT can be produced in various stable electron configurations. (2) In Re²⁹⁺ we observe two stable states. One with R_1 is probably the ground state.

Tasks for theoreticians:

- (1) Calculation of the total binding-energy difference for Re²⁹⁺/Os²⁹⁺ in order to calculate the *Q*-value of the beta-decay of ¹⁸⁷Re.
- (2) Calculation of the energy of the metastable states.

Weighing of different electron config.

April 26th, 2021

GdR RESANET, Webinar

22

Results III

Nuclear masses for fifth force search

PENTATRAP: MPIK, RIKEN, CERN

www.freedomsphoenix.com/

Probe for new force carriers

Isotope shift spectroscopy: 5th force?

•
$$\delta v_i^{A,A'} = F_i \delta \langle r^2 \rangle_{A,A'} + k_i \frac{A-A'}{AA'}$$

- use 2 transitions i, j \rightarrow eliminate $\delta \langle r^2 \rangle_{A,A'}$
- new force mediated through scalar field with mass $m_{\phi} \rightarrow X_i$
- coupling to neutrons: *y_n*
- coupling to electrons: y_e
- ➔ nonlinearity in King's plot:

$$\delta v_i^{A,A'} = F_i \delta \langle r^2 \rangle_{A,A'} + k_i \frac{A - A'}{AA'} + \frac{\alpha_{NP} X_i (A - A')}{AA'}$$

24

Xe mass-ratio measurements

æ

Xe mass-ratio measurements

Motivation: Dark Matter search using King-plot analysis in Ca, Sr, Yb

Mass-ratio uncertainties of 10⁻¹¹ and below required!

Summary

Precision Penning-trap mass spectrometry has reached an amazing precision even on exotic systems and has opened up many new fields of research in neutrino and nuclear physics!

Thanks a lot for the invitation and your attention!

