

**Two-Proton Radioactivity** 

**GDR RESANET – 15 march 2021** 

# On the Tracks of Two-Proton Radioactivity



radioactivity on the neutocologic deficient side of the table of isotopes



what is two-proton radioactivity?



loops between theory and experiment



#### a new tracking device

# On the Tracks of Two-Proton Radioactivity



radioactivity on the neutocollecticient side of the table of isotopes



what is two-proton radioactivity?



loops between theory and experiment



#### a new tracking device

# about radioactivity

#### an story started 120 years ago

| $\triangleright$ | 1895 | discovery of X rays                              |  |
|------------------|------|--------------------------------------------------|--|
| $\triangleright$ | 1896 | radiation from Uranium                           |  |
| $\triangleright$ | 1898 | $oldsymbol{lpha}$ and $oldsymbol{eta}$ emissions |  |
| $\triangleright$ |      | development of the atomic                        |  |
|                  |      | nucleus description                              |  |
|                  |      | theory of $oldsymbol{eta}$ radioactivity         |  |
| $\triangleright$ | 1932 | discovery of the neutron                         |  |
| $\triangleright$ | 1934 | artificial radioactivity ( $m{eta}^+$ )          |  |
| $\triangleright$ | 1938 | spontaneous fission                              |  |
| $\triangleright$ |      |                                                  |  |

W. Röntgen H. Becquerel

LOPEZ-MERT M. Curie, E. Rutherford

W. Pauli, N. Bohr, ...

J. Chadwick

I. Curie, F. Joliot

L. Meitner, O. Hahn, R. Frisch Strassman

#### what is radioactivity?

spontaneous transformation of the atomic nucleus into a more stable system

 $\rightarrow$  like any system in physics

| release of | energy | $\leftrightarrow$ | gain of stability |
|------------|--------|-------------------|-------------------|
|            | \$     |                   |                   |
|            | mass   |                   |                   |

15 WWer San



# the valley of beta stability

TENOTRE

mass

neutrons rumb

adulu Suot

Webman Anarowes Bullewell Marcules E- Milewell Marcul

#### binding energy: Bethe-Weizsäcker

 $B(A,Z) = a_v \cdot A \quad \text{volume} \\ - a_s \cdot A^{\frac{2}{3}} \quad \text{surface} \\ - a_c \cdot \frac{Z(Z-1)}{A^{\frac{1}{3}}} \quad \text{Coulomb} \\ - a_a \cdot \frac{(N-Z)^2}{A^{\frac{1}{3}}} \quad \text{symmetry} \\ \pm a_p \cdot A^{-\frac{1}{2}} \quad \text{pairing} \end{cases}$ 

+ shell effects (magic numbers)...

# the valley of beta stability

mass parabola

Terrorbe

BOULINU SUDJOK

mass

neutrons number

#### binding energy: Bethe-Weizsäcker

 $B(A, Z) = a_v \cdot A \quad \text{volume} \\ - a_s \cdot A^{\frac{2}{3}} \quad \text{surface} \\ - a_c \cdot \frac{Z(Z-1)}{A^{\frac{1}{3}}} \quad \text{Coulomb} \\ - a_a \cdot \frac{(N-Z)^2}{A^{\frac{1}{3}}} \quad \text{symmetry} \\ \pm a_p \cdot A^{-\frac{1}{2}} \quad \text{pairing}$ 

+ shell effects (magic numbers)...

# drip-lines: the frontiers of the table of isotopes

#### binding energy: Bethe-Weizsäcker

$$B(A, Z) = a_v \cdot A \quad \text{volume} \\ - a_s \cdot A^{\frac{2}{3}} \quad \text{surface} \\ - a_c \cdot \frac{Z(Z-1)}{A^{\frac{1}{3}}} \quad \text{Coulomb} \\ \bigcirc a_a \cdot \frac{(N-Z)^2}{A^{\frac{1}{3}}} \quad \text{symmetry} \\ \pm a_p \cdot A^{-\frac{1}{2}} \quad \text{pairing} \end{cases}$$

+ shell effects (magic numbers)...

drip-lines B(A,Z) < 0 unbound / nuclear force



# towards the proton drip-line

β decay (β<sup>+</sup>/EC):





 spectroscopy and nuclear structure



# towards the proton drip-line





#### proton transitions: precise probe

# towards the proton drip-line

#### β-delayed multi- proton emission:

- rp-process waiting points
- search for direct 2P emission



- often the only access to very exotic isotopes
- complex proton emission patterns: level densities & statistical aspects

# towards the proton drip-line

#### unbound with respect to proton(s) emission





# On the Tracks of Two-Proton Radioactivity



radioactivity on the propon-deficient side of the table of isotopes



#### what is two-proton radioactivity?



loops between theory and experiment



#### a new tracking device

### first theoretical predictions

#### ON NEUTRON-DEFICIENT ISOTOPES OF LIGHT NUCLEI AND THE PHENOMENA OF PROTON AND TWO-PROTON RADIOACTIVITY

V I GOLDANSKY

P N Lebedev Physical Institute, USSR Academy of Sciences, Moscow

Received 14 March 1960

**Abstract:** Application of isobaric invariance principles to light nuclei leads to a very simple relation between the Z-th proton binding energy  $E_p$  in nucleus 1 ( $_{Z}M_{N}^{A}$ ) and the Z-th neutron binding energy  $E_n$  in the miror nucleus 2 ( $_{N}M_{Z}^{A}$ ) With an accuracy of the order of a few per cent their difference  $E_{n2} - E_{p1} = \varDelta E_{np}$  is independent of N for a given Z and is given by

$$\Delta E_{np} \approx E_n(ZM_Z^{2Z}) - E_p(ZM_Z^{2Z}) \approx 1.2 \frac{Z-1}{(2Z-1)^{\frac{1}{3}}}$$

which is more correct than the usual expression  $12 (Z-1)/(Z+N-1)^{\frac{1}{2}}$  By exploiting this fact one can predict the existence and properties of almost ninety new neutron-deficient isotopes of light nuclei (up to Z = 34) and establish the limits of stability of the isotopes with respect to decay with proton emission. Among the specific properties of neutron-deficient isotopes, proton and two-proton radioactivity effects which may occur are of special interest. Some nuclei are indicated in which these effects may be observed. The main features of a very curious phenomenon of two-proton radioactivity are discussed.

#### TWO-PROTON RADIOACTIVITY THEORY

V. M. GALITSKY and V. F. CHELTSOV Physical Engineering Institute, Moscow

Received 20 October 1963

Abstract: A method of studying two-proton radioactivity is offered. The method is based on the similarity of the problem with nucleon pairing in spherically symmetrical nuclei. The method is applied to the case when the quasi-stationary one-proton level has no orbital angular momentum. The total probability of the decay per unit time and the distribution of the emitted protons in directions and relative energies are obtained.



1960

# first observations



# first observations







# quasi-(un)bound nuclei at the proton drip-line





# quasi-(un)bound nuclei at the proton drip-line



if Coulomb barrier is larger than proton separation energy

 $\rightarrow$  metastable state

then tunnel effect → 1-proton radioactivity

# quasi-(un)bound nuclei at the proton drip-line

#### illustration of odd – even effect:

- stable isotopes





# why studying this process?

ground-state 2-proton radioactivity

- → drip-line and masses (beyond the « drip-line ») transition Q-values
- → nuclear structure

energies, half-life, levels configuration

→ pairing

correlations in energy and angle of emitted protons

→ tunnel effect

theoretical descriptions

#### the emitted protons carry information on what's going on inside the nucleus

the 2-proton radioactivity mixes the structure (wave functions) and the (decay) dynamics



# On the Tracks of Two-Proton Radioactivity



radioactivity on the propon-deficient side of the table of isotopes



what is two-proton radioactivity?



#### loops between theory and experiment



#### a new tracking device

# initial predictions



#### First calculation by V.I. Goldanskii (1960s)

- $\rightarrow$  simple potential model
- → based on masses differences (mass predictions)

#### $\rightarrow$ tunnel effect

barrier penetration of a <sup>2</sup>*He* particle vs. simultaneous emission of 2 protons

energy sharing

1.8

1.8

2.3

2.3

2.7

1.3 8)

2.3

0.6-0.8 g) 2.3

2.0

2.0

2.5<sup>g</sup>) 1.7

1.78) 1.7

 $\rightarrow$  equal sharing between protons

# discussion of the splitting of <sup>2</sup>*He* into 2 protons along *r* axis

#### mass region A $\approx$ 50 already foreseen as the most promising

### search for candidates

 $Q_{2P} > 0$  and  $Q_{P} \le 0$  (mass differences)

### most exotic nuclei nothing is known ! U only mass predictions

### search for candidates

simple <sup>2</sup>He tunneling model



half-life 1  $\mu s \sim 10 ms$ 

### a difficult experimental access to the drip-line

 $\rightarrow$  very exotic nuclei  $\rightarrow$  very short half-lives (~*ms*)

> how to produce nuclei far from stability?

transfer, charge exchange fusion evaporation induced fission

target spallation + ISOL separation high energy projectile (proton) thick target -> extraction from Parget separation & purification collection & detection



### a difficult experimental access to the drip-line

→ very exotic nuclei
→ very short half-lives (~ms)

how to produce nuclei far from stability?

target spallation ISDL separation

#### projectile fragmentation

transfer, charge exchange

fusion evaporation

induced fission



high energy and intensity ion beam projectile fragmentation in a thin target fragment separator (charge and mass) implantation identification & decay

(LISE @ GANIL)

#### projectile fragmentation facilities in the 1990's & 2000's



### experimental exploration...



GSI / FRS (1996): 3 events

#### no measurement of the decay modes...

#### first observation of <sup>48</sup>Ni GANIL / LISE (1999): 4 events

40

42.5

45

Time of flight (ns)

- 00-

37.5

Zn

400

27.5

32.5

30

35

47.5

Blank *et al.* PRL84 (2000)

m.

# first observation: the case of <sup>45</sup>Fe



# first observation: the case of <sup>45</sup>Fe



competition of decay modes

 $\leftrightarrow$ 

2 proton emission

β-proton(s) emission



\* CENBG J. Giovinazzo

**GDR RESANET - 15/03/2021** 

# first observation: an indirect signature



**CENBG** J. Giovinazzo

**GDR RESANET - 15/03/2021** 

#### experimental confirmation of the 2-proton radioactivity

indirect signature: no observation of individual protons only scenario explaining the measurement

2002 2P decay of <sup>45</sup>Fe: at GANIL / LISE and GSI / FRS

2-proton radioactivity is found...

> not enough for understanding the process

#### experimental confirmation of the 2-proton radioactivity

indirect signature: no observation of individual protons only scenario explaining the measurement

2002 2P decay of <sup>45</sup>Fe: at GANIL / LISE and GSI / FRS

based on the same experimental technique (indirect observation)

2005 2P decay of <sup>54</sup>Zn at GANIL / LISE indication of the 2P decay of <sup>48</sup>Ni (confirmed later...)

2016 2P decay of <sup>67</sup>Kr at RIKEN / BigRIPS



### a very limited information for theory...

experiment: half-life  $(T_{1/2})$  and transition energy  $(Q_{2P})$ 

#### models based on nuclear structure

#### **R-matrix formalism**

- Barker & Brown approach
- include *p-p* resonance
- shell model wave functions

#### shell model embedded in the continuum (SMEC)

- tentative approach from Ploszajczak & Rotureau



### a very limited information for theory...

experiment: half-life  $(T_{1/2})$  and transition energy  $(Q_{2P})$ 

#### models based on nuclear structure

#### **R-matrix formalism**

- Barker & Brown approach
- include *p-p* resonance
- shell model wave functions

#### shell model embedded in the continuum (SMEC)

- tentative approach from Ploszajczak & Rotureau

⇒ no dynamics limited comparison: T<sub>1/2</sub>(Q<sub>2P</sub>) (with Q<sub>2P</sub> taken from experiments !)

#### **3-body model**

- core+p+p system (hyperspherical harmonics)
- good dynamical description
- no intrinsic structure prediction



$$\boldsymbol{T}_{1/2} = f(\boldsymbol{Q}_{2P})$$

### **3-body model: correlations predictions**



# **3-body model: correlations predictions**

developed by M.V. Zhukov & L.V. Grigorenko



### a new experimental step: tracking experiments

#### standard (silicon) experiments

- limited experimental information:  $T_{1/2}$ ,  $Q_{2P}$  &  $BR_{2P}$
- Imited comparison with theoretical interpretations

#### purpose of tracking experiments

- measure proton-proton correlations angular distribution and energy sharing
- compare with 3-body model (kinematics)
- extract structure information

### a new experimental step: tracking experiments

#### development of gas detectors Time Projection Chambers for tracking of particles

charged particles slow down in a **gas volume** 

ionisation electrons drift to a 2D detector

the **2D detector** registers the **tracks projection** 

the **drift time** measures the **3<sup>rd</sup> dimension** 



### a new experimental step: tracking experiments

# X-Y strips projection readout TPC (CENBG)





### direct observation



### direct observation





<sup>48</sup>Ni

confirmed as 2P emitter 4 p-p events



M. Pomorski *et al.*, PRL 2011

experiment @ NSCL  $\rightarrow$  75 counts of p-p correlations





# tracking experiments results

first angular distribution: good agreement with predictions from the 3-body model



pioneering experiments

- → opening structure studies at the drip-line
- → angular distribution probes the wave function content (single particle states)

requires more statistics other cases to test the models descriptions



### probing structure beyond the drip-line



54**Zn** : 30 protons

2p<sub>1/2</sub>

2p<sub>3/2</sub>

 $1f_{7/2}$ 

proton-proton angular distribution  $\rightarrow$  orbitals configuration



48*Ni* : 28 protons





### mixing structure and dynamics



### happy end ?...

# mixing structure and dynamics



#### first hypothesis: transition from 2P to sequential decay ?



### first hypothesis: transition from 2P to sequential decay ?

<sup>67</sup>Kr

<sup>66</sup>Br

1р

(semi-analytical R-matrix calculation)

- indication of a 1p channel opening ?
- possible transition from 2P to seq. emission
   transition region: S<sub>p</sub> = [-340 ; -270] keV



### second hypothesis: influence of deformation ?



recent work by Wang & Nazarewicz, PRL 120 (2018) (Gamow Coupled Channels + coupling to core exc.)

with 
$$|m{eta}_2| < 0.1$$
  $ightarrow T_{1/2}^{2P} > 220$  ms

with  $\beta_2 = -0.3$ 

$$\rightarrow T_{1/2}^{2P} = 24_{-7}^{+10} ms$$

agreement with exp. !





١

### second hypothesis: influence of deformation ?



# angular correlation prediction

recent work by Wang & Nazarewicz, PRL 120 (2018) (Gamow Coupled Channels + coupling to core exc.)

with  $|\beta_2| < 0.1 \rightarrow T_{1/2}^{2P} > 220 ms$ 

with  $\beta_2 = -0.3 \rightarrow T_{1/2}^{2P} = 24^{+10}_{-7} ms$ agreement with exp. !

#### time for new measurements







#### consistent structure and dynamics description



<sup>67</sup>*Kr* 

**3-body model** not available for <sup>48</sup>Ni extrapolation from <sup>45</sup>Fe & <sup>54</sup>Zn



good agreement in the case of <sup>45</sup>Fe...



#### time for new measurements



# On the Tracks of Two-Proton Radioactivity



radioactivity on the propon-deficient side of the table of isotopes



what is two-proton radioactivity?



loops between theory and experiment



#### a new tracking device

#### ACTAR TPC collaboration

**ACtive TARget & Time Projection Chamber** 





### a 4D detector: tracking and energy



#### **ACTAR TPC: main elements**



512 @ 1-100 MHz

and data concentration

photo O. Poleshchuk (2017

### beginning of the scientific program

#### 2017 commissioning experiment

active target mode resonant reaction <sup>1</sup>H(<sup>18</sup>O,<sup>15</sup>N)<sup>4</sup>He

(T. Roger, B. Mauss)

#### 2019 first physics campaign

 active target mode giant resonance <sup>68</sup>Ni(α,α')

(R. Raabe, M. Vandebrouck)

 implantation-decay mode proton radioactivity of <sup>54m</sup>Ni (10<sup>+</sup>, 150 ns) <sup>53m</sup>Co (19/2<sup>-</sup>, 220 ms) (D. Rudolph, B. Blank)



### proton radioactivity of <sup>54m</sup>Ni



→ isospin symmetry → structure around N = 28→ *fp* shell model coupled

to continuum

(very) short half-life:

- detection impossible in solid stopping detector ion signal hides proton signal (1:1000 energy deposit)
- TPC: separated ion and proton tracks



proton

detector

ion

### proton radioactivity of <sup>54m</sup>Ni

 $T_{1/2} = 155(3) ns$ 6457  $10^{+}$ 146  $p_1$ 6311 8+ 5237 9/2γ  $p_2$ 3386 1327 3241 7/2-3910 -<sup>53</sup><sub>27</sub>Co<sub>26</sub> + p 3071 --6+ 2620 -1392 🚽 <sup>54</sup>Ni<sub>26</sub>



4D imaging of proton decay

principle of the measurement: 3D tracking + decay time



GDR RESANET – 15/03/2021

On the Tracks of Two-Proton Radioactivity

#### correlation measurements for <sup>48</sup>Ni and <sup>67</sup>Kr with ACTAR TPC



### timeline of the 2-proton radioactivity





# further studies

known cases



 $\rightarrow$  future (short term) tracking / correlation experiments: <sup>48</sup>Ni, <sup>54</sup>Zn, <sup>67</sup>Kr

#### further studies, new candidates ?

larger set of nuclei with different structure configurations between closed shells Z = 28 and Z = 50

