New Insight inte Fission

from recent Experiments

C. Schmitt, IPHC Strasbourg, France
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FISSION...

. . .. a dramatic radioactive decay involving a formidable
re-arrangement of the proton and neutron fluids

= rich laboratory for fundamental physics
& impact in astrophysics
& societal and technological applications

Q low-energy fission (E* < 30M6V>




Why investing etfort in measuring accurately fragment (4, Z, E,;,)

Fission:
A journey on the fissioning nucleus
Potential Energy Landscape
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Status from experiments (~ 1950 — 2000)
Mostly: Fragment 4 distributions with A4 = 3-5amu; Very poor info on Z

O Low-energy fission is predominantly asymmetric around uranium

[ Heavy fragment located at A~130-150 independent on the system
Double-humped asymmetric peak due to shell stabilized fragments

81 mode attracted by N=82 (sph. shell)

S2 mode attracted by N~88 (def. shell)

Symmetric contribution SL due to macroscopic energy < <
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Complete and accurate Z distributions in 2000
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+ FRS heavy-ion spectrometer
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= why are these Z favored?
shell(s) behind?

= neutron vs. proton role?

Need A and Z

with unique precision
= 1isotopic (N, Z) information



Most recent measurements for fission of actinides

VAMOS@GANIL
(Farget, Camaano, Ramos, et al.)

SOFIA/ALADIN@GSI

(Taieb, Chatillon, et al.)

inverse kinematics + advanced heavy-ion spectrometer

complete and fully resolved A4, Z, E;;, distributions for various (Acy, Zcn, E¥)

- Induce fission in
multi-nucleon transfer

- Identify the transfer channel by
detecting the light ejectile
(i.e. the fissioning nucleus)

- Study fission by detecting in coinc.
one of the FF in VAMOS

for one of the FF

Fission properties for
238-239J, 239Np, 240Py, 244Cm, 25°Cf,

with E*~ 6 to 46 MeV




Sample of results from VAMOS@GANIL fo

Complete isotopic distribution with best resolution /
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v' Unique Z identification \

-> proton e-o staggering
-> pairing in fission

v Same available for N

- Favored N or Z numbers?
- Connection with known shells?
-> Washing out with E*?

Much more in:

Camaano et al.,

PRC 88,024605 (2013);
92,034606 (2015),

Ramos et al., PRC 97,
054612 (2018); 99,024615
(2019), 101,034609(2020),
PRL 123, 092503(2020)



Update conclusion from most accurate experiments on actinides

/ [ Leading role played by protons in fission

3 Minor role played by neutrons

[ S17 observed around 52 is due to Z = 50 stabilization
supported by high TKE

3 S2 observed around 55 driving by octupole stabilized (Z=52-56)
configurations
cf. Scamps and Simenel, Nature 564, 382 (2018)

( )
NB: Observed position vs. location of effective shell

{ Zcn/ Ney dependence,
nucleons from the neck




Can we extrapolate our understanding of fission gained
from actinides to other regions of the nuclear chart?

Current knowledge: Shell effects in the nascent fragments play a key role...

BUT how to reconcile 1t with observation of l l
asymmetric fission of 13YHg ? e ]L + + +
expected: 2 x PZr 5, gso— + +l+ +
observed: ~ 4;,~ 80 + 100 °2°§ ot
- ﬂ% ﬁ%

O

- AndreyeFV gen‘][ ailhi PlliL (2010)
Evidence for a “new” type of asymmetric
fission in the n-deficient pre-actinide region ?

Intense experimental/theoretical work N
\ @’

-

Can an independent “island” be delineated? No consensus yet

J




Status on fission measurements in the n-deficient

O B-delayed @ ISOLDE/CERN (£* ~ few MeV)
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Low-energy fission in the n-deficient lead region @ VAMOS

Benefit from the assets of GANIL to go beyond current information = (A, Z)

Method:
Fusion-fission in inverse kinematics **Xe(4.3AMeV) + >*Fe = "8Hg (E*~33MeV)
...challenging (A,Z) identification due to slow (~1-3AMeV) fragments...

Set-Up:

® VAMOS @ 29° for identifying
one of the fragments (4,2,v, 9, @)

4 h
e 2nd arm (@ 35° for identifying target Vdf
the partner (4,v, 9, @) b90<g
eam
4§ / %(MWPC+81)@IUAC India

9 Xy y/ O_fl

Innovative observables in the region:

pre

{ A, Z of both fragments at scission and at rest ~s: 4,,, within~4 amu)
Corresponding TKE’s (« primary » and « secondary »)




Results on low-energy fission of '7*Hg @ VAMQS (1)

AE-E correlation at FP
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Results on low-energy fission of '"Hg @ VAMOS (2)

Apre ® A, = Neutron multiplicity M,
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Results on low-energy fission of "*Hg @ VAMOS (3)

Is it consistent with the conclusions drawn for actinides?

Microscopic contribution to n-richness Shape relaxation after scission
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> Same microscopic contribution = Same magnitude of shape
to N/Z at given Z for different N’'s relaxation at given Z for different N’s

e.g. for Z=42 {N ~ 56 for "*Hg

S ... and more in C.S. et al., PRL 126, 132502(2021)
N ~ 66 for actinides



Protons as key drivers in fission

Shape relaxation governed by the proton sub-system for and 50
= The scission configuration is driven by up

shapes due to proton nuclear

Early predictions by
Proton S
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Summing up of most recent data in the n-deficient lead region

Extraction of the light and heavy fragment mean Z and N

L) T
I73p, O 1
Wigg *
I0Hg O 7]
g @

{, % * o

'.-)!puv_

‘.mHs o :
Mp, X -
:‘ﬁpuA <
XCR_n O

[-delayed

O Z, = (36%2)
Zytollows from Zy
Ny g increase with Ny

Electromagnetic-

[ Leading role of the light fragment
proton number

O No “trap” at N 5z = 50

[ Attributable to stabilized deformed

octupole shell effects at scission
around Z=34,38 within HF+BCS
approach

K. Mahata, C. Schmitt, submitted and arXiV.2007.16184 (2021)



Inventory of leading effects in low-energy
asymmetric fission across the nuclear chart

1. Due to nuclear structure of the nascent fragment(s):

O Z = 50 spherical configuration (NB: seen 52 in actinides, 50 in Fm's)
O Z ~ 55 deformed (octupole) configuration

O Z ~ 36 deformed (octupole) configuration

2. Due to the fissioning system macroscopic potential energy ~ N/Z

= Competition = f (Aﬁss, Zﬁss)

Can we « reconcile » the asymmetric fission properties
observed in the « old » actinide and « new » lead regions?

V.




Look across the chart
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Theory (1)
Ooo,

fl Ab initio calculations impossible for heavy nuclei
[ Microscopic self-consistent models (mean-field and beyond)

0 Macro-microscopic models

\EI (Semi-)empirical models

%
A

[ Statistical approaches (static considerations+Boltzman thermodynamics)

O Dynamical (time-dependent) approaches (Schrodinger/Langevin equation)
\_

J

(o

« Conceptual » unknowns (#-n interaction, friction,...) = phenomenology
O Limited number of degrees of freedom (in shapes, 4, Z, N/Z, pairing...)

(3 Issue of computing resources
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Theory (2)
Ooo,

v Impressive progress by fundamental theories

Some « tuning » remains necessary
Mitigate quantitative achievement — Uncertain predictive power

BUT DEFINITIVELY PROMISING

v" Constrained time-dependent HF+BCS calculations for isotopic
composition of fission fragments 5 strong influence of protons

Scamps and Simenel, Nature 564, 382 (2018), PRC 100, 041602(2019)

( Zy~ 52-56 octupole configurations drive fission of actinides )
Ny~ 52-56
and/or quadrupole-octupole configurations drive fission of pre-actinides
ZL ~ 34
. ,




Look across the chart

asym =2 sym
U Fragment A from different facilities/approaches «  wm e

U Main trends from south-west to north-east

o

U Comparison with the GEF model (K HSchmidt et al,)
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& achievement by GEF can assist
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... About further extrapolation...
K. Mahata, C. Schmitt, submitted and arXiV.2007.16184 (2021)
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Some conclusion “

& Fission is an exciting, intringuing, complex and rich process,
which spreads over various domains

&, Crucial fragment (4,Z) accurate information

Leading quantal effects are identified
Room for much effort on their competition + dynamics

& Essential widespread investigations in (g , Zgss) over the nuclear chart

PERSPECTIVES...



Special thanks to:
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