

cea

A rich region for nuclear physics, atomic physics, chemistry.

Some aspects already covered by Waely, Nov. 30th 2020.

Outlook

- Discovery of transuranium nuclei using neutrons
- r-process nucleosynthesis (neutrons again)
- Theoretical predictions
- Deformed shell gaps : experimental evidences and techniques
- Some trends for the future

Ceal Fermi and the neutron-induced reactions

• Irradiation
$${}^{A}_{Z}X + n \rightarrow {}^{A+1}_{Z}X \xrightarrow{\beta \ decay} {}^{A+1}_{Z+1}Y$$

- (chemical separation)
- Detection of radioactivity (β-) Using a Geiger-Müller counter
- \rightarrow lifetime and eventually β energy using absorbers

Neutron produced using Rn alpha source (800 mC) + Be \rightarrow (1000 n/s/mC)

Glass tubes with Rn+Be

Systematic investigation in Roma of neutron-induced reaction along the periodic table from H to U.

About 30 new isotopes discovered !

Geiger-Müller counter

Ausonium and Hesperium

Nature 133 (1934) 898 Possible Production of Elements of Atomic Number Higher than 92

By PROF. E. FERMI, Royal University of Rome

In this way it appears that we have excluded the possibility that the 13 min.-activity is due to isotopes of uranium (92), palladium (91), thorium (90), actinium (89), radium (88), bismuth (83), lead (82). Its behaviour excludes also ekacæsium (87) and emanation (86).

This negative evidence about the identity of the 13 min.-activity from a large number of heavy elements suggests the possibility that the atomic number of the element may be greater than 92. If it were an element 93, it would be chemically homologous with manganese and rhenium. This hypothesis is supported to some extent also by the observed fact that the 13 min.-activity is carried down by a precipitate of rhenium sulphide insoluble in hydrochloric acid. However, as several elements are easily precipitated in this form, this evidence cannot be considered as very strong.

Elements named Ausonium and Hesperium by Franco Rasetti

Cea Element 93 confirmed in Berlin... and much more !

1935 : neutron induced reaction repeated by chemists Hahn, Meitner and Strassmann at Kaiser Wilhelm-Institut far Chemie, Berlin (and in other places) Compared to Fermi group, improved chemical separation, more lifetime component identified and better lifetime measurement.

1.
$$U + n \longrightarrow {}^{10''}_{92}U \longrightarrow {}^{\beta}_{93}{}^{2,2'}_{93}Eka \operatorname{Re} \longrightarrow {}^{\beta}_{94}{}^{59'}_{94}Eka \operatorname{Os} \longrightarrow {}^{\beta}_{95}Eka \operatorname{Ir} \longrightarrow {}^{\beta}_{96}{}^{2,5h}_{96}Eka \operatorname{Pt} \longrightarrow {}^{\beta}_{97}Eka \operatorname{Au} ?$$

2. $U + n \longrightarrow {}^{40''}_{92}U \longrightarrow {}^{\beta}_{93}{}^{16'}_{93}Eka \operatorname{Re} \longrightarrow {}^{\beta}_{94}{}^{5,7h}_{94}Eka \operatorname{Os} \longrightarrow {}^{\beta}_{95}Eka \operatorname{Ir} ?$
3. $U + n \longrightarrow {}^{23'}_{92}U \longrightarrow {}^{\beta}_{93}Eka \operatorname{Re} ?$

Meitner, Hahn, Strassmann. ZP 106 (1937) 249

P. Abelson using the Berkeley Cyclotron as a neutron source (large flux) \rightarrow no conclusive results, no alpha decay found.

Cea Neptunium (93) and Plutonium (94)

1940 : McMillan and Alberson PR 57 (1940) 1185
 Neutron from the reaction d(8MeV) + ⁸Be.
 n + ²³⁸U → 2.3 days activity corresponds to ²³⁹93
 but not a rare-earth, not homolog to Re. Chemical properties similar to U !
 Second « rare-earth » group starting from U ?

• 1940, 1941 : G. Seaborg's team d(16 MeV)+ $^{238}U \rightarrow ^{238}93 \rightarrow ^{238}94 \rightarrow ^{234}U$ d(16 MeV)+ $^{238}U \rightarrow ^{239}93 \rightarrow ^{239}94$

Voluntary restrictions to publish papers on fission and transuranium elements: potential application for energy production.

Berkeley, 60 inch cyclotron in 1939

PHYSICAL REVIEW VOLUME 70, NUMBERS 7 AND 8 OCTOBER 1 AND 15, 1946

Properties of 94(239)

J. W. KENNEDY, G. T. SEABORG, E. SEGRÈ, AND A. C. WAHL Radiation Laboratory and Department of Chemistry, University of California, Berkeley, California

(Received May 29, 1941)*

* This letter was received for publication on the date indicated but was voluntarily withheld from publication until the end of the war. The original text has been somewhat changed, by omissions, in order to conform to present declassification standards.

Cea Chemical identification : what was wrong ?

IA	II A	III B	IV B	VВ	VIB	VII B	VI			IB	IIВ	III A	IV A	VA	VI A	VII A	0
1 H																	2 He
3 Li	4 Be											5 B	8 C	7 N	8	9 F	10 Ne
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 A
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Ci	25 Mn	26 Ге	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 So	35 Br	36 Ki
37 Rb	38 Sr	39 Y	40 Zr	41 ND	42 Mo	(13)	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 1e	53 1	5 X
55 Cs	56 Ba	57-71 Ln	72 Hf	73 Ta	74 VV	75 Re	76 Os	17 11	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	(85)	8 R
87)	88 Ra	89 Ac	90 Th	91 Pa	92 U	(93)	(94)	(95)	(96)	(97)	(98)	(99)					
		57	58	59	60	(61)	62	63	64	65	66	67	68	69	70	71	

Periodic table ~1930 : Z=93 same column as Mn, Tc, Re

Commissariat à l'énergie atomique et aux énergies alternatives

The actinide series

1 H 1,008													1 FT 7	11/1 m	4	P		***
3 Li 6,940	4 Be 9.02											5 B 10.62	6 C			-		
11 Na 22, 997	12 Mg 24.32	13 Al 24.97										13 Al 26.97	14 51 28			F	2	1
19 K 39.096	20 Ge 40.08	21 Sc 45.10	22 Tí 4790	23 V 50 95	24 Cr 52 01	25 Mn 54.93	26 Fe 55.05	27 Co 58 94	28 Ni 5869	29 Cu 63.57	30 Zn 65 38	31 Ga 69.72	31 60 72			ST.		1
37 Rb 85.48	38 Sr 87,63	39 Y 68.92	40 Zr 91 22	41 Cb 92.91	42 Mo 95.95	43	44 Ru 101.7	45 Rh 102.91	46 Pd 106.7	47 Ag 107.880	48 Gd 112_41	49 In 114.76	50	A.H194	4	- Maria		1
55 Cs (32.9)	56 Ba 137.36	57 50-71 LA SEX LO CO	72 Hf 178.6	73 Te 180.88	74 W 163.92	75 Re 106.31	76 08 1902	77 ir 193.(78 P1 195.23	79 Au 197,2	80 Hg 20051	8) Ti 204.39	81 Pl 207			X		7
87	88 Re	89 SEE AC AS	90 Th	91 Po	92 93 U Np	94 Pu	95	96					<u>3</u> 2		1	IL	F	
					1.00	1	1 45	1		1 45	1	1				10		
LANTH	ANIDE ERIES	L0	58 Ce 140.13	Pr 140.92	Nd 14427	61	62 Sm 150 43	63 Eu 152 0	64 Gd	65 Tb	66 Dy 162.46	Ho Ho Ho35	68 Er 1672	69 Tm 169.4	70 YB	71 Lu 174.99		

ACTINID SERIES

99 C	90 Th	9i Pe	92 U	93 Np	94 Pu	95	96				
	232.12	231	238 07	237							

Actinide concept : Glen Seaborg ~ 1944 Table from G. Seaborg, Science 104 (1946) 379

Z=96 Cm : Seaborg 1944 (60'' cyclotron) ²³⁹Pu(α,n)²⁴²Cm $\rightarrow^{\alpha}_{150d}$ Pu AECD-2182 report, <u>Chem. Eng. News 23 (1945) 2190</u>

Z=95 Am : Seaborg 1944 (60" cyclotron) ²³⁸U(α,n)²⁴¹Pu $\xrightarrow{\beta^{-}}_{\sim}^{241}$ Am AECD-2185 report, <u>Chem. Eng. News 23 (1945) 2190</u>

Z=97 Bk : Thompson 1949 (60'' cyclotron) $^{241}Am(\alpha,2n)^{243}Bk \xrightarrow{EC} ^{234}Cm$ UCRL-669 report, <u>PR 77 (1950) 838</u>

Z=98 Cf: Thompson 1950 (60'' cyclotron) $^{242}Cm(\alpha,n)^{245}Cf \xrightarrow{\alpha}{241}Cm$ UCRL-790 report <u>PR 78 (1950) 298</u>, <u>102 (1956) 747</u>

(mass assignment was wrong in the 1950 paper)

Ceal Einsteinium (Z=99) and Fermium (Z=100)

First thermonuclear explosion « Mike » November 1rst 1952, Eniwetok Atoll ~10 Mtons

Explosion debris collected by a plane transferred to Los Alamos.

Results obviously classified.

Some new alpha-rays.

Albert Ghiorso, Berkekey obtains some samples. \rightarrow Discovery ²⁵³Es and ²⁵⁵Fm

In total 15 new isotopes discovered : ^{244,245,246}Pu, ²⁴⁶Am, ^{246,247,248}Cm, ²⁴⁹Bk, ^{249,252,253,254}Cf, ^{253,255}Es, ²⁵⁵Fm

									253 Rf	204 Rf	200 Rf	250 Rf	²⁹⁷ Rf	208 Rf	259 Rf	Rf	Rf	Rf	Rf	204 Rf	Rf	200 Rf	207 20 Rf
								251 Lr	252 Lr	253 Lr	254 Lr	255 Lr	256 Lr	257 Lr	258 Lr	259 Lr	260 Lr	261 Lr	262 Lr	263 Lr	264 Lr	265 Lr	266 Lr
248 249 250 No No No										252 No	253 No	254 No	255 No	256 No	257 No	258 No	259 No	260 No	261 No	262 No	263 No	264 No	
				245	246	247	248	249	250 Md	251 Md	252 Md	253 Md	254	255 Md	256 Md	257 Md	258	259 Md	260	261	262 Md		J
	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	na		
39	F m 240	F m 241	F m 242	F m 243	F m 244	F m 245	F m 246	F m 247	F m 248	F m 249	Fm 250	F m 251	F m 252	Fm 253	F m 254	Fm	Fm	F m 257	Fm 258	Fm			
Es	Es	Es	Es	Es	Es	Es	Es	Es	Es	Es	Es	Es	Es	Es	Es	E	Es	Es	Es				
38 Cf	239 Cf	240 Cf	241 Cf	242 Cf	243 Cf	244 Cf	245 Cf	246 Cf	247 Cf	248 Cf	249	250 Cf	251 Cf	252	253 CE	254 C	255 C 2	256 Cf					
37 Bk	238 Bk	239 Bk	240 Bk	241 Bk	242 Bk	243 Bk	244 Bk	245 Bk	246 Bk	247 Bk	248 Bk	49 Bk	250 Bk	251 Bk	952 Dk	253 1 k	54 BK		3				
36 Cm	237 Cm	238 Cm	239 Cm	240 Cm	241 Cm	242 Cm	243 Cm	244 Cm	245 Cm	246	247	248 Cm	149 Cm	250 Cm	251 Cm	252 Cm							
35	236	237	238	239	240	241	242	243	244	245	246	247	248	249									
Am 34	Am 235	Am 236	Am 237	Am 238	Am 239	Am 240	Am 241	Am 242	Am 243	Am 244	245	246	Am 247	Am		Jecé	37						
Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pt	P	Σų	Fu	Be	10			N.					
Np	234 Np	Np	236 Np	Np	238 Np	Np	Np	Np	Np	Np	- 4 Np	Np								X			•
32 U	233 U	234 U	235 U	236 U	237 U	238	239	240	241	242	243	Fa	ast ne	eutro	n cap	oture	S						
31 Pa	232 Pa	233 Pa	234 Pa	235 Pa	236 Pa	237 Pa	238 Pa	239 Pa	240 Pa	241 Pa												$\boldsymbol{\nu}$	
30 Mile	231	232	233	234	235	236	237	238	239														
29	230	231	232	233	234	235	236	237	111														

Cea Heavy nuclei and the r-process

Production of (super-)heavy nuclei in the universe; r-process 1957 : Burbidge, Burbidge, Fowler, and Hoyle (<u>Reviews of Modern Physics</u>) Cameron (<u>Publications of the Astronomical Society of the Pacific</u>)

Nucleosysnthesis starting from the Fe region. Need huge neutron flux and explosive process, Several possible sites; core-collapse Supernovae was first considered.

Cea Neutron star / black hole merger

R-process site suggested in 1974 by Lattimer and Schramm "Black-Hole-Neutron-Star Collisions", <u>Astrophys. J. 192 (1974) L145</u> Lattimer, Mackie, Ravenhall and Schramm <u>Astrophys. J. 213 (1977) 225</u>

NS-NS merger : Symbalisty and Schramm <u>Astrophys. J. Lett. 22 (1982) 143</u> Meyer <u>Astrophys. J. 343 (1989) 254</u>

Popular candidate for r-process since ~ 2000, several predictions made. See e.g. <u>S.Goriely, G.Martínez-Pinedo NPA 944 (2015) 158</u>

Cea Neutron star merger 2017 08 17 GW 170817

Commissariat à l'énergie atomique et aux énergies alternatives

Actually not Cs + Te, but Sr. Data re-interpreted in Watson et al., Nature 574 (2019) 497

Model includes plasma opacity Only x-ray line can escape because absorption Main component = black body

Gamma-Ray Burst Optical/Near-infrared Detector (GROND), La Silla Observatory

Commissariat à l'énergie atomique et aux énergies alternatives

Observed wavelength (Å)

Stephane Goriely, Andreas Bauswein, Hans-Thomas Janka https://www.youtube.com/watch?v=zouvhsFvKiM See also <u>S.Goriely, G.Martínez-Pinedo NPA 944 (2015) 158</u>

Solar versus neutron-start merger abundances

CC2 A fresh candidate : the collapsar

Collapsar = collapse of massive rotating star (20-30 Msun) \rightarrow black hole

Siegel, Barnes and Metzger Nature 569 (2019) 241

Less frequent than NS-merger, but r-process yield larger (x 30). Collapsars ~ 80% heavy elements in the universe ?

r-process site(s) not firmly identified. r-process abundances may be due to several processes.

Some ingredients of r-process nucleosynthesis

- n-capture cross-section
- β-decay rates
- (n,γ), (γ,n) rates
- fission rates (neutron-induced, β-delayed fission) and fission fragment distribution (fission cycling)
- Neutrino physics -> (influences n,p ratio, electron fraction, etc.)
- Thermodynamics

Quantities relevant for actinide & transactinide

 \rightarrow Masses, fission barriers, fission fragment distributions

Nuclear properties can not be measured in the r-process path region (fission barriers and masses difficult to measure anyway)

\rightarrow Theory

Cea SHN theoretical predictions

- 1949 : The spherical shell model (Mayer, Haxel, Jensen and Suess).
 ... 28, 50, 82, 126, ...
- 1957 : G. Scharff-Goldhaber "There may be, for instance, another region of relative stability at the doubly magic nucleus ₁₂₆X³¹⁰"
- 1966 : Lysekil symposium "Why and how should we investigate nuclei far from the stability line?"

H. Meldner, Ark. Fiz. 36 (1966) 593, shell model

 \rightarrow Z=114, N=184

Confirmed by <u>C.Y. Wong PL 21 (1966) 688</u> (shell model) <u>A. Sobiczewski et al. PL 22 (1966) 500</u> (Woods-Saxon)

= calculations using phenomenological potentials

Why Z=114 and not Z = 126 ?

Commissariat à l'énergie atomique et aux énergies alternatives

HFB calculations with Skyrme forces :

Vautherin and Brink <u>PLB 1970</u>, Vautherin, Veneroni and Brink <u>PLB 1970</u>, Davies and McCarthy <u>PRC 1971</u>, Köhler <u>NPA 1971</u>, Bassichis and Kerman <u>PRC 1970</u> and <u>PRC 1972</u>, Rouben et al. <u>PLB 1972</u> and <u>PLB 1977</u>, Saunier and Rouben <u>PRC 1972</u>, Beiner et al. <u>Phys. Scr. 1974</u>, Brack and Quentin <u>Phys. Scr. 1974</u> (Z=114 = Gammelgormium) , Cusson et al. <u>PRC 1976</u>, Vallières and Sprung <u>PLB 1977</u>, Kolb <u>ZPA 1977</u>, Tondeur <u>ZPA 1978</u> and <u>1980</u>

Spherical calculation only, for few nuclei, some simplifications, mostly no pairing

RMF calculations Gambhir et al. Ann. Phys. 1990, Boersma PRC 1993

\rightarrow Z= 114 not refuted; Z = 120, 126 or 138 also suggested

Warning = magic or higher stability \neq stable against β decay. In many cases confusion shell gaps vs stability.

HFB calculations with Gogny force.

Berger, Bitaud, Dechargé, Girod, Péru, Proc. Int. Workshop XXIV on Gross Properties of Nuclei and Nuclear Excitation (1996)

"Z=114 appears here merely as a subshell with 1.3-1.5 MeV gap, smaller than the one observed at Z=120. Actually, significant proton pairing correlations are found in Z=114 nuclei, in particular ²⁹⁸114 – which indicates that 114 is not a magic number." Systematic calculations using self-consistent models (spherical nuclei) WS + Skyrme forces by Ćwiok, Dobaczewski, Heenen, Magierski and Nazarewicz. <u>NPA 611 (1996) 211</u>

Systematic calculations using self-consistent models (spherical nuclei), Skyrme and RMF

Rutz, Bender, Bürvenich, Schilling, Reinhard, Maruhn and Greiner, <u>PRC 56 (1997) 238</u>, Bender, Rutz, Reinhard, Maruhn and Greiner <u>PRC 60 (1999) 034304</u>

M. Bender et al., <u>PLB 515 (2001) 42</u>, Shell stabilization of super- and hyperheavy nuclei without magic gaps

- Higher level density
- Spin orbit \rightarrow orbitals flipped
- Low *j* orbitals → can modify significantly the gap but not drastically the binding energies
- \rightarrow smooth island of stability

cea

Doubly magic character of predicted SHE not as marked as lighter nuclei Island of stability smooth and not well localized.

Neutron Number N

Commissariat à l'énergie atomique et aux énergies alternatives

Deformed SHN?

α-decay energy systematics, Ghiorso et al., PR 95 (1954) 293

pletion in the process of the filling of levels in the simple single-particle shell model may be an oversimplification because this is just the region where the strong surface coupling caused by large spheroidal distortion^{10–13} or configuration interaction^{14–18} of several nucleons may be important. In this connection one might expect on the basis of either the Bohr-Mottelson¹² strong surface coupling model or the de-Shalit-Goldhaber¹⁵ configuration interaction arguments regarding trends of first excited state energies, that if the nucleon configuration at N=152 involves only completely filled levels, the first excited state energies should approach a maximum as is observed in the closing of other shells¹⁹⁻²¹; the experimental evidence so far indicates that this is not the case.^{4,22} Thus it seems that the 152-neutron subshell may be of a fundamentally different nature than the major closed shells.

Experimental evidence

 $(\mathcal{I} \land$

Commissariat à l'énergie atomique et aux énergies alternatives

Ceal Already suspected by Ghiorso in 1955

Commissariat à l'énergie atomique et aux énergies alternatives

Spontaneous fission

Cea

Hessberger, EPJA 53 (2017) 75

1949 : Townes systematics of electric quadrupole moments PR 76 (1949) 1415

1950 : Spheroidal model by J. Rainwater, unified model by Bohr and Mottelson

1955 : Nilsson deformed shell model by S.G. Nilsson

Cea

Chasman, Ahmad, Friedman, and Erskine. Rev. Mod. Phys. 49 (1977) 833

Commissariat à l'énergie atomique et aux énergies alternatives

Ch. Theisen - RESANET

Let's do spectroscopy in the A~250 region !

 \rightarrow energy, spin and parity and compare with theory

Commissariat à l'énergie atomique et aux énergies alternatives

Ceal Deformed shell gaps vs theory

Dobaczewski et al. <u>NPA 944 (2015) 388</u>

R.R. Chasman et al., <u>Rev. Mod. Phys. 49, 833 (1977)</u>

Commissariat à l'énergie atomique et aux énergies alternatives

Z=100, N=152 deformed shells

Density Functional Theories fail to reproduce simultaneously Z=100 and N=152 Phenomenological potential reproduce Z=100 and N=152

- What is the problem at Z = 100 / N = 152 ?
- Z=108, N=196 deformed shells
- ► All models agree !

SHE region

WS : Z=114 / N = 184 HFB : Z=126 / N =184 RMF : Z=120 / N =172

Who should the experimenter trust ?

What about fission barriers ? C22

Cellective properties in the Z~100, N~152 mass region

How to measure a deformation ?

Fast timing transition rate T = $\infty E^5 B(E2) (1+\alpha)$ B(E2, 0+ \rightarrow 2+) = $\frac{5}{16\pi} Q_{20}^2$

Ton et al., <u>NPA 155 (1970) 235</u>

- 2⁺ lifetime measurement ²²⁸Th, ^{234,236}U, ^{238,240}Pu,
 ²⁴⁸Cm
- Huge internal conversion for 2⁺→0⁺ : fast timing measurement for low energy electrons.

Coulex

 $\sigma(\text{coulex}) = \sigma(\text{ruth}) \ \mathsf{P}(0+ \rightarrow 2+)$ $\mathsf{P}(0+ \rightarrow 2+) \rightarrow \ \mathsf{B}(\mathsf{E}2, 0+ \rightarrow 2+)$

Ford et al., <u>PRL 27 (1971) 1232</u> ^{230,232}Th, ^{234,236,238}U, ^{238,240,242,244}Pu, ^{244,246,248}Cm, and ²⁵²Cf using α beam

Cea Low spin collective properties using direct reactions

Direct reactions e.g. (α,t) , (d,p) or (d,t)Ejectile detection using a spectrograph

- Enegy
- Angular distributions
- \rightarrow E, J^{π}; orbital occupancy

Commissariat à l'énergie atomique et aux énergies alternatives

Ceal Spectroscopy using Heavy-ion Coulex

GSI 80s : ²⁰⁸Pb beam \rightarrow Coulex ²³²Th, ^{234,236,238}U, ^{242,244}Pu, ²⁴⁸Cm

[Speng et al., PRL 17 (1983) 1522]

→ Backbending in the transuranium region → the alignment of a π i13/2 or vj15/2 pair ? (still an open question) Still only transuranium coulex using HI beam and reference value

1981 : high-spin studies ²⁴⁸Cm, coulex GSI Noting heavier until 1997 : ²⁰⁸Pb(⁴⁸Ca,2n)²⁵⁴No Jyväskylä and Argonne

Today's status

Fusion-Evaporation Argonne + Jyväskylä

Transfer, Coulex, inelastic scattering

Cea Moment of Inertia

Cea Moment of inertia vs theory

Overall good agreement

study upbending or backbending phenomena

ightarrow Alignment of high-j orbitals with increasing rotational frequency $\,\omega$

Ackermann & Theisen Phys. Scr. 92 (2017) 083002

Laser spectroscopy

Commissariat à l'énergie atomique et aux énergies alternatives

Cea ²⁵³Es optics spectroscopy

E.S. Worden et al., Jour. Opt. Soc. Am. <u>58 (1968) 998</u>, <u>60 (1970) 1297</u>, <u>64 (1974) 77</u> Ionisation : lamp from ²⁵³Es ($t_{1/2}$ = 20days) sample (0.8 µg)

53 lines observed;23 with hyperfine structure

I = 7/2 $\mu = 3.6 \pm 0.4 \mu_N$ $Q = 6.0 \pm 0.4 b$

²⁵²⁻²⁵⁴No, GSI

CZ Z

Commissariat à l'énergie atomique et aux énergies alternatives

Ch. Theisen - RESANET

Cea Some future trends

High beam intensities

- SHE Factory @ Dubna
- LINAG, S3, NEWGAIN @ SPIRAL2
 - ightarrow synthesis, decay spectroscopy, isomers, etc...

Precision measurements

- Mass measurement and Laser spectroscopy @ GSI
- S3 LEB (Low Energy Branch), DESIR
- Lifetime measurement ?
- Coulex ?

Reaction mechanism

- Fusion-evaporation, incomplete fusion (actinide)
- MultiNucleon Transfer reactions

Theory

- Reaction mechanism
- Structure

