Nucleosynthesis: new perspectives from gamma-ray astronomy

Vincent Tatischeff (IJCLab Orsay)

RESANET Scientific Colloquium Webinar, December 14, 2020

2

Stellar nucleosynthesis

- 1919 First artificial transmutation: ¹⁴N + ⁴He → ¹⁷O + p (Rutherford & Blackett; see Waely's talk)
- 1919 J. Perrin then A. Eddington suggest that the energy of the stars results from nuclear fusion
- **1957** First overview of the nucleosynthesis processes (Burbidge, Burbidge, Fowler & Hoyle; + Cameron)

RESANET Scientific Colloquium Webinar

Major achievement of the 20th century

Model of Galaxy chemical evolution

- Abundances in the solar system (formed ~ 9 Gy after the Milky Way) from ¹²C to
 ⁶⁸Zn are reproduced within a factor of 2
- Some issues, e.g. ¹⁵N produced in **novae**?

- Tanks to stellar evolution theory, galaxy chemical evolution models and nuclear physics experiments and theory,
- after centuries of research (e.g. Anaxagoras 500-428 B.C.), the origin of the elements is finally understood in broad outline

7

Nucleosynthesis beyond the Fe peak

• S process (slow): $N_n \sim 10^7 \rightarrow 10^{11} \text{ cm}^{-3}$; massive stars ($M > 13 M_{\odot}$), AGB stars

• R process (rapid): $N_n > 10^{22} \text{ cm}^{-3}$; explosive environment(s) ?

Site(s) of r-process nucleosynthesis

Fate of massive stars

 Collapse due to an endothermic instability: photodesintegration of Fe-group nuclei, electron captures in a degenerate O-Ne-Mg core, formation of electron-positron pairs

- Bounce of the infalling material when ρ_{cent} -> 2.3x10^{14} g/cm^3 = nuclear density
- Outward-moving shock stalls as shock energy dissipated in photodesintegration
- Mechanisms of shock reactivation? Heating by neutrinos, hydrodynamic instabilities, MHD+rotation mechanism...
- Which fraction of stellar collapses do not yield a supernova explosion?

RESANET Scientific Colloquium Webinar

Thermonuclear supernovae

- <u>What we know</u>: thermonuclear explosion of a **carbon-oxygen white dwarf** in a binary system accreting mass from a companion star
- Nature of the companion? Another white dwarf or a normal star?
- Ignition? Off-centre ? At the surface?
 WD near the Chandrasekhar mass?
 He flash in sub-Chandrasekhar WD?
- **Burning front propagation?** Sub-sonic deflagration / Supersonic detonation?

RESANET Scientific Colloquium Webinar

Thermonuclear SNe as standard candles¹²

- <u>Phillips relation</u>: brighter SNe (i.e. more ⁵⁶Ni) have slower declining light curves (higher opacity due to Fe-group elements)
- ⇒ Standard candles for measuring cosmic distances
- ⇒ Accelerated expansion of the Universe due to dark energy (Nobel Prize 2011 for S. Perlmutter, B. P. Schmidt & A. G. Riess)
- But diversity of Type Ia SNe not understood

December 14, 2020

- What is (are) the astrophysical site(s) of the r process (synthesis of about 1/3 of the stable nuclei)?
- How do massive stars explode?
- What are the progenitors and explosion mechanism(s) of thermonuclear supernovae? Can we use them for precision cosmology?
- ⇒ Gamma-ray astronomy in the MeV range

Nuclear spectroscopy in astronomy

- Nuclear spectroscopy independent of ambient thermodynamic conditions
- Gamma-ray line production from:
 - Radioactivity
 - Nuclear collisions
 - Positron annihilation (511 keV)
 - Neutron capture (2.2 MeV from n + H)

Astronomy with radioactivities

Direct view of the central engine!

- More than 3000 known radioactive nuclei (NuDat)
- But only 234 significant radioactive γ -ray emitters (intensity I_{γ} >1%) with half-life $T_{1/2} > 1 \text{ day}$ (escape from the source) and $T_{1/2} < 10^7 \text{ years}$ (sufficient activity)

 Abundant nuclei: 23 radioisotopes with Z < 30 (Fe peak): ⁷Be, ²²Na, ²⁶Al, ⁴⁷Ca, ⁴⁶Sc, ⁴⁷Sc, ⁴⁸Sc, ⁴⁴Ti, ⁴⁸V, ⁵¹Cr, ⁵²Mn, ⁵⁴Mn, ⁵⁹Fe, ⁶⁰Fe, ⁵⁶Co, ⁵⁷Co, ⁵⁸Co, ⁶⁰Co, ⁵⁶Ni, ⁵⁷Ni, ⁶⁷Cu, ⁶⁵Zn, ⁷²Zn

Astronomy with radioactivities

Isotope	Production site	Decay chain	Half-life	γ -ray energy (keV) and intensity
r-process	Neutron star mergers	β decay, α decay	$\sim day$	$\sim 0.1 - 2 { m ~MeV}$
nuclei	uclei f			
$^{7}\mathrm{Be}$	Novae	$^{7}\mathrm{Be} \xrightarrow{\epsilon} ^{7}\mathrm{Li}^{*}$	53.2 d	478 (0.10)
56 Ni	Type Ia SNe, Core-collapse SNe	$^{56}\mathrm{Ni} \xrightarrow{\epsilon} ^{56}\mathrm{Co}^*$	6.075 d	158 (0.99), 812 (0.86)
		${}^{56}\mathrm{Co} \xrightarrow{\epsilon(0.81)} {}^{56}\mathrm{Fe}^*$	77.2 d	$847\ (1),\ 1238\ (0.66)$
57 Ni	Type Ia SNe, Core-collapse SNe	$^{57}\mathrm{Ni} \xrightarrow{\epsilon(0.56)} {}^{57}\mathrm{Co}^*$	1.48 d	$1378 \ (0.82)$
		$^{57}\mathrm{Co} \xrightarrow{\epsilon} {}^{57}\mathrm{Fe}^*$	272 d	$122 \ (0.86), \ 136 \ (0.11)$
22 Na	Novae	$^{22}Na \xrightarrow{\beta^+(0.90)} ^{22}Ne^*$	2.60 y	1275~(1)
$^{44}\mathrm{Ti}$	Core-collapse SNe, Type Ia SNe	$^{44}\mathrm{Ti} \xrightarrow{\epsilon} {}^{44}\mathrm{Sc}^*$	60.0 y	$68 \ (0.93), \ 78 \ (0.96)$
		${}^{44}\mathrm{Sc} \xrightarrow{\beta^+(0.94)} {}^{44}\mathrm{Ca}^*$	3.97 h	1157~(1)
^{26}Al	Core-collapse SNe, WR stars AGB stars, Novae	$^{26}\mathrm{Al} \xrightarrow{\beta^+(0.82)} ^{26}\mathrm{Mg}^*$	$7.2 \cdot 10^5 { m y}$	1809(1)
$^{60}\mathrm{Fe}$	Core-collapse SNe	$^{60}\mathrm{Fe} \xrightarrow{\beta^{-}} {}^{60}\mathrm{Co}^{*}$	$2.6 \cdot 10^6 \text{ y}$	59 (0.02)
		60 Co $\xrightarrow{\beta^{-}}$ 60 Ni*	5.27 v	1173(1), 1332(1)

Individual sources

Diffuse γ -ray emission => sources + interstellar medium

RESANET Scientific Colloquium Webinar

December 14, 2020

Gamma-ray astronomy in the MeV domain¹⁷

- Worst covered part of the EM spectrum (only a few tens of known steady sources so far between 0.5 and 30 MeV vs. 5500+ sources in the current Fermi/LAT catalog)
- Domain of nuclear spectroscopy
- Many objects have their **peak emissivity** in this range (GRBs, blazars, pulsars...)
- V. Tatischeff

RESANET Scientific Colloquium Webinar

X-ray sky in the keV range

Gamma-ray sky > 1 GeV

Gamma-ray sky in 1 - 30 MeV

Observational challenges for γ-ray astronomy ²¹

- Photon interaction probability reaches a minimum at ~ 10 MeV
- ➢ Three competing processes of interaction, Compton scattering being dominant around 1 MeV ⇒ complicated event reconstruction

The MeV range is the domain of nuclear γ-ray lines (radioactivity, nuclear collision, positron annihilation, neutron capture)

Strong instrumental background from activation of spaceirradiated materials

December 14, 2020

Telescope concepts in γ-ray astronomy

Gamma-ray mission proposal to ESA

E (keV)	FWHM (keV)	Origin	SPI sensitivity (ph cm ⁻² s ⁻¹)	e-ASTROGAM sensitivity (ph cm ⁻² s ⁻¹)	Improvement factor
511	1.3	Narrow line component of the e+/e- annihilation radiation from the Galactic center region	5.2×10^{-5}	4.1×10^{-6}	13
847	35	⁵⁶ Co line from thermonuclear SN	2.3×10^{-4}	3.5×10^{-6}	66
1157	15	⁴⁴ Ti line from core-collapse SN remnants	9.6×10^{-5}	3.6×10^{-6}	27
1275	20	²² Na line from classical novae of the ONe type	1.1×10^{-4}	3.8×10^{-6}	29
2223	20	Neutron capture line from accreting neutron stars	1.1×10^{-4}	2.1×10^{-6}	52
4438	100	¹² C line produced by low-energy Galactic cosmic-ray in the interstellar medium	1.1×10^{-4}	1.7×10^{-6}	65

Science with a new gamma-ray mission

<complex-block>

© NASA/AMEGO Decadal Survey (All-sky Medium Energy Gamma-ray Observatory)

- <u>e-ASTROGAM collaboration</u>: more than 400 scientists from institutions in 29 countries
- Lead proposer: A. De Angelis (INFN, It.); Co-lead proposer: V.T. (CNRS, Fr.)
- **Instrument paper**: Exp. Astronomy 2017, 44, 25 <u>https://arxiv.org/abs/1611.02232</u>
- Science White Book (245 authors; 216 pages), see https://arxiv.org/abs/1711.01265

SN 2014J: first SN Ia detected in γ rays

- Nearest thermonuclear supernova in last 50 years, occurred in the starburst galaxy M82 at D = 3.5 Mpc
- INTEGRAL detection of the ⁵⁶Co ($T_{1/2}$ =77 d) γ -ray lines \Rightarrow synthesis of 0.6 ± 0.1 M_{\odot} of ⁵⁶Ni in the explosion (Churazov et al. 2014, 2015; see also Diehl et al. 2015)
- Unexpected detection of the ⁵⁶Ni ($T_{1/2}$ =6.1 d) γ -ray lines \sim 20 d after the explosion (Diehl et al. 2014; Isern et 2016)
 - \Rightarrow Surface explosion? High-speed plume of ⁵⁶Ni (~0.05 M_{\odot})?

Thermonuclear SNe with e-ASTROGAM²⁶

relation for precision cosmology

0

100

Time past explosion [days]

50

150

200

Radioactivites from core-collapse supernovae²⁷

- e-ASTROGAM should detect the ⁵⁶Ni decay chain in rare core-collapse events such as pair-instability supernovae and magnetar-powered jet explosions
- ⁴⁴Ti expected from ~10 young supernova remnants
 ⇒ unique probe of the explosion mechanism
- NuSTAR's mapping of radioactivity in Cas A SNR: explosion asymmetries probably caused by low-mode convective instabilities (Grefenstette et al. 2014, 2017)

RESANET Scientific Colloquium Webinar

December 14, 2020

Supernova history in the Milky Way

- ~300 SN remnants have been identified in the Milky Way, 4 being less than 500 years old: 3 SNe Ia (G1.9+0.3, Kepler, Tycho) and only 1 core-collapse SN (Cassiopea A)
- CCSN rate (estimated from ²⁶Al mass, 2.8 ± 0.8 M_{\odot}): ~2 per century => ~10 in 500 yrs
- With e-ASTROGAM, missing SN remnants (probably hidden in highly obscured clouds) could be uncovered by their ⁴⁴Ti emission
- Mass of ⁴⁴Ti ejected in Cas A (only Galactic SNR detected so far): (1.2 2) × 10⁻⁴ M_{\odot}
- Expected $^{44}{\rm Ti}$ production in CCSNe: 10⁻⁵ to 2 \times 10⁻⁴ M_{\odot}

Neutron star mergers and kilonovae

- GW170817 (LIGO & Virgo) associated with the short GRB 170817A (*Fermi* and *INTEGRAL*)
 & the optical/NIR transient AT2017gfo => kilonova (powered by radioactivity of r-nuclei)
- e-ASTROGAM would detect ~60 sGRB per year, and localize them to within ~2 square degrees to initiate observations at other wavelengths
- Prompt γ-ray line emission from a kilonova detectable to a distance of ~10 Mpc
- Delayed γ-rays (¹²⁶Sn, fission) detectable from a 10-100 kyr old remnant in the Galaxy (see Li 2019; Wu et al. 2019; Korobkin et al. 2020; Wang et al. 2020...)

Future gamma-ray space observatory can shed light on several important questions for nucleosynthesis:

- What is (are) the astrophysical site(s) of the **r process**?
- How do massive stars explode?
- What are the progenitors and explosion mechanism(s) of thermonuclear supernovae (cosmology)?
- What is the contribution of novae to the chemical enrichment of the Milky way?
- How are hot stellar ejecta incorporated into the cold interstellar medium (²⁶Al, ⁶⁰Fe)?
- What is the origin of the LiBeB-producing **low-energy cosmic rays**?
- Where do the positrons that annihilate in the galactic bulge come from?